(Press-News.org) Organic peroxy radicals (RO2) are important intermediates in the degradation of atmospheric volatile organic compounds (VOCs). RO2 not only participates in the chain cycles of atmospheric radicals and influences oxidizing capacity of the atmosphere, but also controls the formation of secondary pollutants. Under low NOx conditions, peroxy radicals react mainly with HO2 radicals, as well as with themselves, and their products tend to have low volatility easily entering the particulate phase. However, the associated double radical reactions are complex, the chemical mechanisms are poorly understood and experimental and theoretical studies are extremely challenging.
Recently, a collaborated team headed by Prof. Weijun Zhang from Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS) studied the self-reaction of ethyl peroxy radicals (C2H5O2). In this process, they combined advanced vacuum ultraviolet (VUV) photoionization mass spectrometry with theoretical calculations, which provided a new insight into the direct measurement of the elusive dimeric product Organic peroxides (ROOR).
The results have been reported in International Journal of Molecular Sciences.
Together with scientists from Université de Lille, France, the team investigated the self-reactions of ethyl peroxy radical (C2H5O2). In addition to the main products CH3CHO, C2H5OH, C2H5O and C2H5OOH, the dimeric product C2H5OOC2H5 from self-reaction of C2H5O2 was clearly observed for the first time in VUV photoionization mass spectrum.
The kinetic experiments of self-reaction of C2H5O2 and theoretical calculations were performed to verify the reaction mechanism of the ROOR product channel. Also, the adiabatic ionization energy of C2H5OOC2H5 was determined by measuring the synchrotron photoionization efficiency spectrum. Combined with Franck-Condon factor simulations, the neutral and ionic structures of C2H5OOC2H5 were revealed.
"Our study demonstrated that the ROOR product channel is not negligible in the small RO2 self-reactions," said LIN Xiaoxiao, member of the team.
END
Scientists detect the dimer product ROOR generated by the self-reaction of ethyl peroxy radicals
2023-04-25
ELSE PRESS RELEASES FROM THIS DATE:
Monolayer hexagonal boron nitride can extend plasmonic enhancement limit
2023-04-25
A research team led by Prof. YANG Liangbao from Hefei Institutes of Physical Science, Chinese Academy of Sciences found that hexagonal boron nitride (h-BN) could effectively block electron tunneling and extend the ultimate plasmonic enhancement limits in a single-atom-layer gap, providing deep insights into quantum mechanical effects in plasmonic systems and enabling potential novel applications based on quantum plasmonics.
The results were published in Nano Letters.
The team have been working on developing surface-enhanced ...
New dual mode ratio fluorescence sensing system enables rapid in situ detection of carbaryl residues
2023-04-25
A team of researchers led by Prof. JIANG Changlong from Institute of Solid State Physics (ISSP), Hefei Institutes of Physical Science of of Chinese Academy of Sciences developed a new sensing system for detecting carbaryl residues.
The research findings have been published in ACS Sustainable Chemistry & Engineering.
Carbaryl is a widely used insecticide that can easily enter the body through respiratory intake and dermal contact, resulting in serious health hazards, including carcinogenicity and reproductive abnormalities. Therefore, it is crucial to detect carbaryl residues in environmental and food samples. However, ...
Defect-rich MnOx nanobelts prepared for glutathione detection in recent study
2023-04-25
A recent study published in Sensors and Actuators: B. Chemical highlights the development of highly active oxidase mimics using MnOx nanobelts (NBs) generated through laser irradiation in liquid (LIL) techniques by researchers from Institute of Solid State Physics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences.
Although nanozymes with oxidase mimic activity have shown promise for biomarker sensing, their lower activity compared to natural enzymes has constrained their wider application.
In this research, the team identified that MnOx NBs with an ultrathin layered structure ...
Novel treatment regimen appears well tolerated, beneficial to children with relapsed brain tumors
2023-04-25
AUGUSTA, Ga. (April 25, 2023) – The first in-human-study of a new immunotherapy that blocks a natural enzyme tumors commandeer for their protection was well tolerated by children with relapsed brain tumors and enabled many to have unexpected months of a more normal life, researchers say.
“Our kids were by and large out of the hospital and going about their daily activities. They were in school, we had young adults who were in college living in a dorm on their own, taking their medicine on their own and coming to see us once a month,” says Theodore S. Johnson, MD/PhD, pediatric hematologist/oncologist ...
Signs you could be suffering from racial trauma – and tools for healing, according to therapists
2023-04-25
In the United States, depression and anxiety are on the rise in African Americans and the evidence suggests that racism is a contributing factor, creating a ripple effect on mental health.
Janeé M. Steele Ph.D. and Charmeka S. Newton, Ph.D. are licensed mental health professionals and scholars who specialize in culturally responsive therapy. They say: “In the Black community there can be a real resistance to our own trauma – for example, if I wasn’t exposed to physical abuse, is it really that bad?
“But this kind of systemic, permeating racism that exists all ...
Researchers reveal an ancient mechanism for wound repair
2023-04-24
It’s a dangerous world out there. From bacteria and viruses to accidents and injuries, threats surround us all the time. And nothing protects us more steadfastly than our skin. The barrier between inside and out, the body’s largest organ is also its most seamless defense.
And yet the skin is not invincible. It suffers daily the slings and arrows of outrageous fortune, and it tries to keep us safe by sensing and responding to these harms. A primary method is the detection of a pathogen, which kicks the immune system into action. But new research from the lab of Rockefeller’s Elaine Fuchs, published in Cell, reveals an alternative protective ...
Using superconductors to move people, cargo and energy through one combined system
2023-04-24
The promise of superconductivity for electrical power transmission and transportation has long been held back by high costs. Now researchers from the University of Houston and Germany have demonstrated a way to cut the cost and upend both the transit and energy transport sectors by using superconductors to move people, cargo and energy along existing highway infrastructure.
The combined system would not only lower the cost of operating each system but would also provide a way to store and transport liquified hydrogen, an important ...
Brian Clark selected to speak, presented discoveries at NIH workshop and in Journal of Gerontology
2023-04-24
Ohio University Professor of Physiology and Executive Director of the Ohio Musculoskeletal and Neurological Institute (OMNI) Brian Clark Ph.D. was one of 40 expert leaders in the field of aging from around the world chosen to present at a workshop hosted by the National Institute of Health’s (NIH) National Institute on Aging (NIA) on the development of function promoting therapies for age-related weakness. Clark was also asked by the NIH to publish a comprehensive review of his research over the past decade in the Journal of Gerontology.
The workshop covered ...
Increased risk of Alzheimer's disease due to exposure to polycyclic aromatic hydrocarbons
2023-04-24
Polycyclic aromatic hydrocarbons (PAHs) are typical organic compounds found in cigarette smoke and vehicle exhaust. In addition, PAHs are produced from incomplete combustion of organic material and cooking. The highest concentrations of PM-bound PAHs ranged from 550 ng/m3 to 39000 ng/m3, were observed in Chinese kitchens, fire stations, and ships. Polycyclic aromatic hydrocarbons may combine with ultrafine particles (UFPs) in the air to form particle-bound PAHs. PM0.1 may adsorb large amounts of toxic organic compounds, and long-term exposure to indoor UFPs from cooking resulted in ...
This gel stops brain tumors in mice. Could it offer hope for humans?
2023-04-24
Medication delivered by a novel gel cured 100% of mice with an aggressive brain cancer, a striking result that offers new hope for patients diagnosed with glioblastoma, one of the deadliest and most common brain tumors in humans.
“Despite recent technological advancements, there is a dire need for new treatment strategies,” said Honggang Cui, a Johns Hopkins University chemical and biomolecular engineer who led the research. “We think this hydrogel will be the future and will supplement current treatments for brain cancer.”
Cui’s team combined an anticancer drug and ...