(Press-News.org) Plants are impressive in their diversity, but especially in the variety of metabolites they produce. Many plant natural products are highly complex molecules, such as the alkaloids vincristine and vinblastine, which are produced by the Madagascar periwinkle Catharanthus roseus. These two substances are already indispensable in cancer therapy.
Researchers are very interested in finding out which individual biosynthetic steps are required to form the complex molecules. "Currently, these compounds are still obtained in very small quantities from the plant's leaf extract. We can learn from the plant how this compound is produced and use this knowledge to develop production systems that are more cost-effective, scalable and sustainable," said first author Chenxin Li of the University of Georgia's Center for Applied Genetic Technologies, describing the research goal.
Assigning genetic and metabolic information to individual cells of plant organs
The scientists know that gene activity is not the same in all cells of a plant and that the chemistry can differ drastically from cell to cell. Therefore, the goal of the current study was to use a new set of methods collectively termed single-cell omics to investigate specialized and rare cell types that play a central role in the biosynthesis of plant natural products, and whose signals are often obscured by more abundant cell types in plant organs. "With single-cell omics, we have a method that allows researchers to assign genetic and metabolic information to individual cells. The term omics refers to the fact that an entire collection of genes or metabolites is quantified and analyzed," says Lorenzo Caputi, head of the Alkaloid Biosynthesis Project Group in the Department of Natural Product Biosynthesis in Jena and one of the lead authors, explaining the methodological approach.
Biosynthetic pathway of vinblastine - organized in three distinct cell types
As the analyses showed, the entire biosynthetic pathway for the alkaloid vinblastine is organized in three stages and three discrete cell types. "The first stage is expressed exclusively in specialized cells associated with vascular bundles in the leaf, called IPAP. The second stage of the biosynthetic pathway is expressed only in cells of the epidermis, the layer of cells that cover the leaves, and the last known steps of the biosynthetic pathway are expressed exclusively in idioblasts, a rare cell type of the leaf," Chenxin Li summarizes the results.
The researchers measured the concentrations of several intermediates in the metabolic pathway for vinblastine in single cells and were surprised: "Two important precursors of vinblastine, catharanthine and vindoline, occur in the idioblast cells at millimolar concentrations, about three orders of magnitude higher than vinblastine itself. The concentration of the two precursors in these cells was much higher than we expected and even exceeded their concentrations in whole organ extracts. However, this observation makes sense in that catharanthine and vindoline were found only in the rare idioblast cells. The abundant other cells in the leaf dilute the high concentration when whole leaves are crushed," says Sarah O’Connor, head of the Department of Natural Product Biosynthesis.
The research team is confident that the organization of biosynthetic pathways for medicinally relevant alkaloids in Catharanthus roseus is not an isolated phenomenon. "We are just beginning to understand how and why such a cell type-specific organization exists. In addition, analysis of genes expressed simultaneously in a particular cell type has helped us identify new players in this metabolic pathway. The same technique can be used to study the biosynthesis of many other natural products. Finally, the exact sites of accumulation of plant compounds, such as the epidermis, the vascular system, or latex duct, can help us hypothesize the ecological roles of natural products. For example, depending on the pattern of accumulation, the compounds may be more effective against biting insects than they are against sap-sucking insects," says Robin Buell, Professor at Georgia University.
A better understanding of the biosynthetic pathways of the anti-cancer drugs vincristine and vinblastine may also help to produce or harvest these compounds more effectively in the long term. The use of methods described is also promising for the study of many other interesting and medically important natural products from the plant kingdom. The approach described here will help to narrow down these rare and specialized cells and uncover the gene activities and chemistry that are exclusive to them.
END
Comprehensive analysis of single plant cells provides new insights into natural product biosynthesis
Single-cell multi-omics reveals that cell types are differentially involved in the production and accumulation of medically relevant plant compounds
2023-05-15
ELSE PRESS RELEASES FROM THIS DATE:
Dementia study reveals how toxic proteins spread through brain
2023-05-15
Fresh insights into the spread of damaging proteins that build up in the brains of people with Alzheimer’s disease could hold the key to stopping the condition progressing, a study says.
Researchers have discovered that synapses, which send essential signals through the brain, are also transporting toxic proteins known as tau around the brain.
Large clumps of the protein tau – called tangles – form in brain cells and are one of the defining features of Alzheimer’s disease. As these tangles spread through the brain during the disease there is a decline in ...
Combined delivery of engineered virus with immunotherapy is safe and improves outcomes in subset of patients with glioblastoma
2023-05-15
HOUSTON ― Intratumoral delivery of an engineered oncolytic virus (DNX-2401) targeting glioblastoma (GBM) cells combined with subsequent immunotherapy was safe and improved survival outcomes in a subset of patients with recurrent GBM, according to results from a multi-institutional Phase I/II clinical trial co-led by researchers at The University of Texas MD Anderson Cancer Center and the University of Toronto.
The study, published today in Nature Medicine, met its primary safety endpoint and demonstrated the combination was well tolerated overall with no dose-limiting toxicities. The study did not meet its primary efficacy endpoint of objective response rate, but ...
Mass General Brigham investigators identify new genetic variant protective against Alzheimer's disease
2023-05-15
A single patient can spark new research questions and provide answers about a disease. And when a new case is identified, investigators can make connections between them that can lead to even more powerful and persuasive ideas about cause and treatment. In a publication today in Nature Medicine, an international team led by investigators from two Mass General Brigham hospitals — Massachusetts General Hospital (MGH) and Mass Eye and Ear — reports on a new case of a patient with a genetic predisposition for developing early-onset Alzheimer’s disease who remained cognitively intact until his late 60s. Through clinical assessments ...
Out of this world control on Ice Age cycles
2023-05-15
A research team, composed of climatologists and an astronomer, have used an improved computer model to reproduce the cycle of ice ages (glacial periods) 1.6 to 1.2 million years ago. The results show that the glacial cycle was driven primarily by astronomical forces in quite a different way than it works in the modern age. These results will help us to better understand the past, present, and future of ice sheets and the Earth’s climate.
Earth’s orbit around the Sun and its spin axis orientation change slowly over time, due to the pull of gravity from the Sun, the Moon, and other planets. These astronomical forces affect the environment on Earth due to changes in ...
Methylated cyclodextrin effectively prevents the crystallization of supersaturated drugs
2023-05-15
In the medicine market, most newly introduced drugs and drug candidates show poor water solubility, which prevents their absorption in the body. This, in turn, limits their therapeutic efficiency. Solubilizing agents such as cyclodextrins (CDs) are commonly employed to enhance their solubility. CDs have a cyclic structure featuring a hydrophilic exterior and a hydrophobic cavity inside that can enclose drug molecules to form inclusion complexes. However, solubilization does not necessarily enhance drug adsorption in the body, since the solubilized drugs cannot ...
Translating science into impact: Cane-Bridge Foundation donates $1M to Boyce Thompson Institute for Innovative Translational Research Program
2023-05-15
Ithaca, NY (May 15, 2023) - Today, the Boyce Thompson Institute (BTI) is taking a significant step forward in its mission to bridge the gap between scientific discovery and real-world application. Thanks to a generous $1M gift from the Cane-Bridge Foundation, BTI has launched an innovative translational program called "Project Vault!" to propel plant science discoveries into applications that tackle global life science challenges.
"The Cane-Bridge Foundation's support is vital to accelerate ...
Latest research provides SwRI scientists close-up views of energetic particle jets ejected from the Sun
2023-05-15
SAN ANTONIO — May 15, 2023 —Southwest Research Institute (SwRI) scientists observed the first close-ups of a source of energetic particles expelled from the Sun, viewing them from just half an astronomical unit (AU), or about 46.5 million miles. The high-resolution images of the solar event were provided by ESA’s Solar Orbiter, a Sun-observing satellite launched in 2020.
“In 2022, the Solar Orbiter detected six recurrent energetic ion injections. Particles emanated along the jets, a signature of magnetic reconnection involving ...
New project to design building skins to retrofit energy-inefficient structures
2023-05-15
Older buildings tend to leak heat through their walls, requiring much more energy to maintain a comfortable temperature in summer or winter. Those constructed prior to the late 1970s rarely meet today’s more rigorous energy standards. And yet they account for large proportion of the buildings standing today. In the US, about 44% of the residential building stock was built before 1970 and about half of the commercial buildings that exist today were built before the 1980s, which creates a significant need for energy retrofitting to reduce environmental impact. A new industry-academic collaboration between Jefferson and Lightweight ...
Heat-loving marine bacteria can help detoxify asbestos
2023-05-15
Asbestos materials were once widely used in homes, buildings, automobile brakes and many other built materials due to their strength and resistance to heat and fire, as well as to their low electrical conductivity. Unfortunately, asbestos exposure through inhalation of small fiber particles has been shown to be highly carcinogenic.
Now, for the first time, researchers from the University of Pennsylvania have shown that extremophilic bacteria from high temperature marine environments can be used to reduce asbestos’ toxicity. The research is published in ...
First-in-human trial of oral drug to remove radioactive contamination begins
2023-05-15
WHAT:
A first-in-human clinical trial of an experimental oral drug for removing radioactive contaminants from inside the body has begun. The trial is testing the safety, tolerability and processing in the body of escalating doses of the investigational drug product HOPO 14-1 in healthy adults. The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, is funding the Phase 1 trial, which is sponsored and conducted by SRI International of Menlo Park, California.
Internal radioactive contamination occurs when radioactive ...
LAST 30 PRESS RELEASES:
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
[Press-News.org] Comprehensive analysis of single plant cells provides new insights into natural product biosynthesisSingle-cell multi-omics reveals that cell types are differentially involved in the production and accumulation of medically relevant plant compounds