(Press-News.org) UNIVERSITY PARK, Pa. — Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive — and expensive — metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called "hydrogen spillover."
First described in 1964, the curiosity has garnered more attention recently as a potential pathway to harness hydrogen for clean energy; however, it hasn’t gained much headway, according to Bert Chandler, professor of chemical engineering and chemistry at Penn State. That’s in large part because, while researchers have been able to identify hydrogen spillover for nearly 60 years, no one has been able to quantify it and describe the mechanism underpinning the phenomenon — until now.
With some luck and a lot of work, Chandler said, a Penn State-led research team has discovered how and why hydrogen spillover occurs and provided the first quantitative measurement of the process. They published their findings in Nature Catalysis.
The work, Chandler said, provides an opportunity to better understand and develop hydrogen activation and storage. Conventional hydrogen storage requires significant amounts of energy to keep the hydrogen cool enough to remain a liquid. With their unique gold-on-titania system, however, the research team demonstrated that they can effectively, efficiently and reversibly break apart hydrogen molecules into hydrogen atoms — a process needed to induce hydrogen spillover — at higher temperatures that require less energy.
“We are now able to explain how hydrogen spillover works, why it works and what drives it,” said Chandler, corresponding author on the paper. “And, for the first time, we were able to measure it — that’s key. Once you quantify it, you can see how it changes, figure out how to control it and figure out how to apply it to new problems.”
In hydrogen-spillover systems, hydrogen gas reacts to split into hydrogen atom equivalents — a proton and an electron but in a slightly different arrangement than their typical layout. In this system, the protons stick to the material’s surface while the electrons enter the semiconducting oxide’s near-surface conduction band. The researchers said they hope to learn to use them to test more advanced chemistry applications such as converting the atoms for use as clean fuel and hydrogen storage, according to Chandler.
“The semiconductor piece is important because the hydrogen atom equivalents have their protons on the surface and their electrons on the subsurface — they are still close together, but separated by a conductive surface,” Chandler said, explaining that this small separation avoids paying a big energy penalty typically needed for charge separation. “For almost all adsorption systems, you have to have favorable heat adsorption to overcome the energy loss it takes to put a gas molecule into a solid via adsorption. It’s entropically unfavorable.”
Entropy represents the unavailable thermal energy needed to move a process forward. In other words, entropy is energy dispersing to substates, like ice melting into water when the energy to keep the molecules in a solid state is unavailable. Energies require balancing, Chandler said, and measuring entropy’s contribution to the balance is near impossible in these systems.
Hydrogen spillover was first discovered in a platinum-on-tungsten-oxide system in 1964 and since then has been observed in different systems. Chandler explained that, until recently, researchers believed the hydrogen atom equivalents were strongly bonded to the nanoparticle layer and required more thermal energy to break those bonds and produce more spillover. But most hydrogen spillover-facilitating systems are messy, as the spillovers can appear to vary their bonding strength to both the nanoparticle and the semiconductor oxide substrate. Chandler dubbed this “fizz adsorption,” describing the fuzzy, sticky bonding that conceals true adsorption and masks what’s driving the spillover: thermal energy or entropy.
“We figured out how to measure that spillover adsorption in a different system: gold on titanium oxide,” Chandler said, noting that gold catalyzes hydrogen differently than many other metals. “Gold requires almost no thermal energy to initiate a reaction with the hydrogen, and it only activates that reaction at the interface with titanium oxide substrate. That means that no hydrogen adsorbs to the gold, so we can quantify all spillover produced because it all goes to the substrate, without leaving any fizz on the gold.”
Without the fizz, the researchers realized that the adsorption was weak — which “flew in the face of what everyone knew,” Chandler said. Without thermal energy as a significant variable, the researchers determined that only entropy could be driving the atoms from the gold to the substrate.
“We got really lucky with our choice of system, which we selected because we were already interested in how gold works as a catalyst,” Chandler said, explaining that previous researchers could measure the amount adsorbed accurately because weak adsorption on the oxide masked the amount of spillover from the metal. “We didn’t invent new chemistry; we just collected the data. It took us six years of measuring and re-measuring — when you make an exceptional claim, you better have exceptional evidence — but we filled this hole in our understanding: entropy drives hydrogen spillover.”
The researchers said they are now planning to investigate material types that could facilitate better hydrogen storage. The work is a step toward clean energy development, according to Chandler, and a striking example of how the scientific process works.
“Science is a self-correcting process — if you find something that doesn’t make sense, you work to figure it out,” Chandler said. “We’ve known about spillover for a long time, but no one had found the right system to quantify and understand it. We collected the data and figured out how to explain the phenomenon. It turns out, the balance of energies that we use is not always obvious, and entropy can drive things we don’t expect.”
Co-authors from Penn State’s Department of Chemical Engineering include Akbar Mahdavi-Shakib, a postdoctoral scholar at the time of the research; Tae Yong Yun, doctoral candidate; Robert Rioux, Friedrich G. Helfferich Professor of Chemical Engineering. Other co-authors are Todd N. Whitaker and Lauren C. Rich, Trinity University; and K.B. Sravan Kumar, Shenguang Wang and Lars C. Grabow, University of Houston. Whittaker is also affiliated with the University of Colorado, Boulder.
The Department of Energy’s Basic Energy Sciences Program, the National Science Foundation and the Research Corporation for Science Advancement supported this work.
END
Striking gold with molecular mystery solution for potential clean energy
Penn State-led researchers say the understanding could help advance hydrogen activation and storage for clean energy technology
2023-09-01
ELSE PRESS RELEASES FROM THIS DATE:
Blood biomarker shows “great promise” predicting progression to Alzheimer’s disease in at-risk population
2023-09-01
DETROIT – Neuroscience researchers at Wayne State University published a review article that confirms the usefulness of neurofilament light (NfL) blood levels to predict the likelihood and rate of progression of neurodegeneration in Alzheimer’s disease. Blood-based NfL is a minimally invasive and easily accessible biomarker, making it a useful clinical biomarker. Youjin Jung and Jessica Damoiseaux, Ph.D., analyzed existing literature to examine the association between serum or plasma NfL and ...
Redo transcatheter aortic valve replacement proven effective, safe
2023-09-01
Cedars-Sinai investigators are leaders in the innovation and use of transcatheter aortic valve replacement (TAVR) with balloon-expandable valves. They now show that redo TAVR procedures are both safe and effective when compared with situations in which patients with similar risk profiles undergo the same procedure for the first time.
The novel findings, published today in the peer-reviewed journal The Lancet, are significant because recent randomized clinical trials have shown that TAVR is a meaningful treatment option for both younger and lower-risk surgical ...
Inflammation may influence weight loss surgery outcomes, new study reveals
2023-09-01
Research funded by the National Institute for Health and Care Research (NIHR) has shown that higher levels of inflammation in the blood of patients with obesity undergoing bariatric surgery predicts poorer weight loss six months after the procedure.
Published in Psychological Medicine and led by researchers from the Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, this is the first study to investigate the links between depression and inflammation in patients with obesity before and after bariatric surgery. The analysis showed a strong relationship ...
Study shows that low-dose aspirin associated with a 15% lower risk of developing diabetes in people aged over 65 years
2023-09-01
*Note- this is an early release from the Annual Meeting of the European Association for the Study of Diabetes (EASD) meeting in Hamburg, October 2-6. Please credit the meeting if you use this story*
New research to be presented at this year’s Annual Meeting of the European Association for the Study of Diabetes (EASD) in Hamburg, Germany (2-6 October) shows that use of low dose (100mg daily) aspirin among older adults aged 65 years and older is associated with a 15% lower risk of developing type 2 diabetes. The authors, led by Professor Sophia Zoungas, School of Public Health and Preventive Medicine, ...
New grant to optimize gut microbes, boost health benefits of broccoli
2023-08-31
URBANA, Ill. — Love it or hate it, broccoli is chock-full of health-promoting chemicals linked to heart health, cancer prevention, immune function, weight management, and more. However, some people are less efficient than others at unlocking those chemical benefits. A research team at the University of Illinois Urbana-Champaign suggests gut microbe communities may be responsible for the variation. With a new grant from the USDA’s National Institute of Food and Agriculture, the team plans to identify which microbes maximize the benefits of broccoli and other brassica ...
Illuminating new horizons: Navigating nonlinear scattering with precision
2023-08-31
In the intricate world of light, a journey through inhomogeneous media often leads to distortions in space, time, spectrum, and polarization. These distortions, detrimental to applications like optical manipulation, imaging, and communication, have long posed a challenge. Enter the art of wavefront shaping (WS) — a potent tool for correcting these wave maladies in linear optics. But that's not all. Nonlinearity adds a twist, finding purpose in fields from biological sensing to phototherapy. Now, picture combining these forces — ...
Digging deeper into how vaccines work against parasitic disease
2023-08-31
COLUMBUS, Ohio – Scientists have established the effectiveness of vaccines they developed to prevent the disfiguring skin disease leishmaniasis in animal studies, and Phase 1 human trial planning is in motion for the most promising candidate.
But in new work, the research team has determined how these vaccine candidates, created using mutated disease-causing parasites, prompt molecular-level changes in host cells that have specific roles in helping generate the immune response.
Despite using the same CRISPR ...
Housing heroes: New program to support veterans experiencing homelessness
2023-08-31
Since 2009, the number of veterans experiencing homelessness across the United States has shrunk by more than 50%, according to a 2022 Department of Housing report.
With the support of a $150,000 grant from the Department of Veterans Affairs (VA), the University of Missouri School of Law Veterans Clinic is aiming to continue this trend here at home with a new program designed to further empower veterans in taking steps out of homelessness.
The Veterans Outreach Program will help attorneys connect with veterans experiencing homelessness with the goal of offering them the legal assistance ...
Mapping the coronavirus spike protein could provide insight into vaccine development
2023-08-31
Although the COVID-19 pandemic was the first time most of humanity learned of the now infamous disease, the family of coronaviruses was first identified in the mid-1960s. In a new study, molecular biologist Steven Van Doren, a scientist in the University of Missouri College of Agriculture, Food and Natural Resources, has uncovered unexpected actions of a key player in how the coronavirus infects its target — a discovery that could guide further vaccine development.
Funded by a National Science Foundation (NSF) grant, Van Doren and his team studied the fusion peptide, an important feature of the spike protein that serves to bind the virus with ...
Dectin-1 stimulation promotes distinct inflammatory signature in HIV and aging
2023-08-31
“To our knowledge, our study is the first to evaluate the specific function of Dectin-1 in the setting of aging and HIV-infection.”
BUFFALO, NY- August 31, 2023 – A new research paper was published on the cover of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 16, entitled, “Dectin-1 stimulation promotes a distinct inflammatory signature in the setting of HIV-infection and aging.”
Dectin-1 is an innate immune receptor that recognizes and binds β-1, 3/1, 6 glucans on fungi. In this new study, researchers Archit Kumar, Jiawei Wang, Allen Esterly, Chris ...
LAST 30 PRESS RELEASES:
Less intensive works best for agricultural soil
Arctic rivers project receives “national champion” designation from frontiers foundation
Computational biology paves the way for new ALS tests
Study offers new hope for babies born with opioid withdrawal syndrome
UT, Volkswagen Group of America celebrate research partnership
New Medicare program could dramatically improve affordability for cancer drugs – if patients enroll
Are ‘zombie’ skin cells harmful or helpful? The answer may be in their shapes
University of Cincinnati Cancer Center presents research at AACR 2025
Head and neck, breast, lung and survivorship studies headline Dana-Farber research at AACR Annual Meeting 2025
AACR: Researchers share promising results from MD Anderson clinical trials
New research explains why our waistlines expand in middle age
Advancements in muon detection: Taishan Antineutrino Observatory's innovative top veto tracker
Chips off the old block
Microvascular decompression combined with nerve combing for atypical trigeminal neuralgia
Cutting the complexity from digital carpentry
Lung immune cell type “quietly” controls inflammation in COVID-19
Fiscal impact of expanded Medicare coverage for GLP-1 receptor agonists to treat obesity
State and sociodemographic trends in US cigarette smoking with future projections
Young adults drive historic decline in smoking
NFCR congratulates Dr. Robert C. Bast, Jr. on receiving the AACR-Daniel D. Von Hoff Award for Outstanding Contributions to Education and Training in Cancer Research
Chimpanzee stem cells offer new insights into early embryonic development
This injected protein-like polymer helps tissues heal after a heart attack
FlexTech inaugural issue launches, pioneering interdisciplinary innovation in flexible technology
In Down syndrome mice, 40Hz light and sound improve cognition, neurogenesis, connectivity
Methyl eugenol: potential to inhibit oxidative stress, address related diseases, and its toxicological effects
A vascularized multilayer chip reveals shear stress-induced angiogenesis in diverse fluid conditions
AI helps unravel a cause of Alzheimer's disease and identify a therapeutic candidate
Coalition of Autism Scientists critiques US Department of Health and Human Services Autism Research Initiative
Structure dictates effectiveness, safety in nanomedicine
Mission accomplished for the “T2T” Hong Kong Bauhinia Genome Project
[Press-News.org] Striking gold with molecular mystery solution for potential clean energyPenn State-led researchers say the understanding could help advance hydrogen activation and storage for clean energy technology