(Press-News.org) An international team of researchers from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg and ETH Zurich has now demonstrated that it is possible to probe electron dynamics in liquids using intense laser fields and to retrieve the electron mean free path – the average distance an electron can travel before colliding with another particle. They found that the mechanism by which liquids emit a particular light spectrum known as the high-harmonic spectrum is markedly different from the one in other phases of matter like gases and solids. The team’s findings open the door to a deeper understanding of ultrafast dynamics in liquids.
Using intense laser fields to generate high-energy photons, known as high-harmonic generation (HHG), is a widespread technique routinely deployed in many different areas of science, for instance for probing electronic motion in materials, or tracking chemical reactions in time. HHG has been studied extensively in gases and, more recently, in crystals but to date much less is known about this phenomenon in liquids.
Now the Swiss-German research team reports in Nature Physics how it demonstrated the unique behavior of liquids when irradiated by intense lasers. So far, almost nothing is known about these light-induced processes in liquids – a stark contrast to the recent scientific progress on how solids in particular behave under irradiation. Hence the experimental team at ETH Zurich developed a unique apparatus to specifically study the interaction of liquids with intense lasers. The researchers discovered a distinctive behavior where the maximum photon energy obtained through HHG in liquids is independent of the laser’s wavelength. So which factor is responsible for this upper limit instead?
That is the question the MPSD Theory group set out to solve. Crucially, the Hamburg researchers identified a connection that had not been uncovered so far. "The distance an electron can travel in the liquid before colliding with another particle is the crucial factor which imposes a ceiling on the photon energy,” said MPSD researcher Nicolas Tancogne-Dejean, a co-author of the study. “We were able to retrieve this quantity – known as the effective electron mean free path – from the experimental data thanks to a specifically developed analytical model which accounts for the scattering of the electrons.”
By combining the experimental and theoretical results in their study of HHG in liquids, the scientists not only pinpointed the key factor which determines the maximum photo energy, but they also performed the first experiment of high-harmonic spectroscopy in liquids. At low kinetic energy, the region probed experimentally in this study, the effective mean free path of the electrons is very hard to measure. Therefore, the work by the ETZ Zurich / MPSD team establishes HHG as a new spectroscopical tool to study liquids and is therefore an important stepping stone in the quest to understand the dynamics of electrons in liquids.
END
Intense lasers shine new light on the electron dynamics of liquids
2023-09-28
ELSE PRESS RELEASES FROM THIS DATE:
Study helps explain how COVID-19 heightens risk of heart attack and stroke
2023-09-28
In some patients, infection with the pandemic virus SARS-CoV-2 can trigger a dangerous immune response in hardened fatty deposits (plaques) lining the heart’s largest blood vessels, a new study shows.
The findings are based on the body’s immune system, which evolved to destroy invading microbes but also drives disease when triggered in the wrong context. Doing so brings on a set of responses termed inflammation, including swelling, which results as immune cells and signaling proteins home in on infection sites. ...
People who use alternative medicine favor risk and novelty, and distrust science
2023-09-28
Over 40 per cent of Canadians have used at least one risk-associated alternative health-care treatment in the past 12 months, says a new UBC study published in PLOS One.
The researchers explored alternative health-care therapies where the proven benefits do not justify the risks involved. They found that people who access these therapies tend to be wealthier, like novelty and taking risks, and are also more likely to distrust conventional medicine.
The multidisciplinary study between UBC School of Nursing and the University of Alberta Health Law Institute involved a survey of 1,492 Canadians ages 16 and over ...
SARS-CoV-2 infects coronary arteries, increases plaque inflammation
2023-09-28
SARS-CoV-2, the virus that causes COVID-19, can directly infect the arteries of the heart and cause the fatty plaque inside arteries to become highly inflamed, increasing the risk of heart attack and stroke, according to a study funded by the National Institutes of Health. The findings, published in the journal Nature Cardiovascular Research, may help explain why certain people who get COVID-19 have a greater chance of developing cardiovascular disease, or if they already have it, develop more heart-related complications.
In the study, researchers focused on older people with fatty buildup, known as atherosclerotic plaque, who ...
Immune checkpoint blockade prior to surgery promising in multiple cancer types
2023-09-28
Treating cancer with immunotherapies known as an immune checkpoint blockade (ICB) prior to surgery (so-called neoadjuvant immunotherapy) has been a rapidly growing area of research, but the scientific community is just scratching the surface of what is possible, according to a review article co-authored by several current and former investigators from the Bloomberg~Kimmel Institute for Cancer Immunotherapy and the Johns Hopkins Kimmel Cancer Center.
“We consider this approach to cancer immunotherapy to be a gold mine ...
HsGDY on Ni foam for loading MoS2/Ni3S2 to enhance the performance on lithium-sulfur batteries
2023-09-28
They published their work on Sep. 26 in Energy Material Advances.
"The booming progress of electric vehicles demands next-generation energy storage technologies with high energy density, low cost, and longevity." said Lu, a professor at the college of chemistry and chemical engineering in Shantou university. "Lithium-sulfur batteries are identified as a promising energy storage system because of their high ultrahigh energy density and large theoretical capacity. However, they are limited by the poor electronic conductivity of sulfur, volume changes of the cathode, and shuttle effect."
Lu explained that the conversion of polysulfides (Li2Sn, ...
Brief dialysis may be best for some kidney patients
2023-09-28
Patients with acute kidney injury requiring outpatient dialysis after hospital discharge receive the same care as those with the more common end-stage kidney disease, according to a study led by UC San Francisco.
But while patients with the latter diagnosis – typically caused by long-standing hypertension or diabetes – must remain on lifelong dialysis or receive a new kidney, some patients on dialysis for acute kidney injury have the potential to recover, the researchers reported in their study in the Journal of the American Society of Nephrology on Sept. 28, 2023.
“For ...
COOPERATE: Empowering minoritized patients with chronic back and other musculoskeletal pain to receive the care they need
2023-09-28
INDIANAPOLIS – A new study led by a U.S. Department of Veterans Affairs, Regenstrief Institute and Indiana University School of Medicine researcher focuses on empowering minoritized patients with chronic back and other musculoskeletal pain to receive care best suited to their individual values and preferences. Black patients continue to experience greater pain severity, worse pain outcomes and inadequate pain treatment compared to White patients, despite national priorities focused on health equity.
COOPERATE (Communication and Activation in Pain to Enhance Relationships ...
Novel battery technology with negligible voltage decay developed at CityU, a world’s first
2023-09-28
A pivotal breakthrough in battery technology that has profound implications for our energy future has been achieved by a joint-research team led by City University of Hong Kong (CityU).
The new development overcomes the persistent challenge of voltage decay and can lead to significantly higher energy storage capacity.
Lithium-ion batteries (LiBs) are widely used in electronic devices, while lithium-(Li) and manganese-rich (LMR) layered oxides are a promising class of cathodes for LiBs due to their high ...
Comprehensive treatment strategy could change CRC with SPM
2023-09-28
Colorectal cancer (CRC) with synchronous peritoneal metastases (SPM) is a challenging disease to treat, with a relatively poor prognosis. However, recent advances in treatment strategies have led to improved outcomes for patients with SPM.
The optimal treatment approach for CRC with SPM remains controversial. A growing body of evidence suggests that comprehensive treatment, including cytoreductive surgery (CRS), chemotherapy, and hyperthermic intraperitoneal chemotherapy (HIPEC), may improve patient outcomes.
A ...
Unlocking the potential of silicon anode materials for commercialized batteries
2023-09-28
In a groundbreaking review published in Nature Energy, Professor Jaephil Cho from the School of Energy and Chemical Engineering at UNIST presents an analysis protocol to evaluate silicon cathode materials applicable to commercialized batteries. The study delves deep into the characteristics and challenges surrounding silicon anode materials—the focus of significant attention as secondary battery components.
Silicon has emerged as a promising alternative to conventional graphite anodes in high-energy lithium-ion batteries due to its exceptional gravimetric capacity. However, intrinsic issues such as severe volume expansion during cycling have hindered the widespread ...