PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Understanding the role of a new enzyme in the development of autism spectrum disorder

Mutations in a tryptophan-metabolizing enzyme might affect dopamine regulation and lead to psychiatric disorders

Understanding the role of a new enzyme in the development of autism spectrum disorder
2024-01-04
(Press-News.org)

Over the past decades, scientists have made substantial progress unveiling the underlying mechanisms behind many psychiatric disorders. Every year, new genetic mutations or protein dysregulations are identified as potential culprits for the symptoms, and sometimes even the root causes of complex neurological diseases, including autism spectrum disorder (ASD), schizophrenia, and Alzheimer’s.

Despite these efforts, the precise roles of several proteins involved in brain function remain obscure. Such is the case for indoleamine 2,3-dioxygenase 2 (IDO2), an enzyme expressed in the brain and metabolized by the tryptophan–kynurenine pathway (TKP). Changes in the metabolites of this pathway have already been linked to many psychiatric disorders, and genetically modified mice have been invaluable tools in such studies. However, the detailed functions of IDO2 in the brain are not known.

Against this backdrop, a research team led by Associate Professor Yasuko Yamamoto, along with colleagues Masaki Ishikawa and Kuniaki Saito, all from Fujita Health University, Japan, conducted an in-depth study on how and why IDO2, and its lack thereof, affects behavioral patterns in mice. Their paper was published in The FEBS Journal online on November 30, 2023.

First, the researchers performed behavioral experiments involving normal and genetically modified mice which lacked the IDO2 gene also referred to as IDO2 knock out (KO) mice. These tests revealed many behavioral abnormalities that were representative of ASD. For example, these mice had difficulty acclimatizing to a new environment, exhibiting repetitive grooming and stereotyped behavior. Moreover, these mice spent less time burying marbles, which indicates limited interest in their surroundings. Finally, experiments on social interactions revealed that the KO mice had trouble learning behaviors from other mice.

Following these tests, the team sought to clarify the biochemical effects of IDO2 in the brain to explain the abnormal behaviors observed. They first found that the deletion of IDO2 led to alterations in the levels of tryptophan metabolites as well as in the TKP. Most importantly, they found that IDO2 KO mice exhibited significant changes in the balance between dopamine release and uptake, especially in the striatum and amygdala regions of the brain. This imbalance led to the downregulation of many molecules that are downstream in the dopamine D1 receptor signaling pathway, including brain-derived neurotrophic factor (BDNF), which is important for the formation of new neurons (brain cells) and the ability of the brain to adapt to new stimuli (neuroplasticity).

Through morphological analysis of neurons in the striatum, the researchers observed that these alterations in dopamine signaling caused IDO2 KO mice to exhibit a significantly higher density of immature dendritic spines. They also observed important changes in populations of cells known as microglia. “Microglia are resident immune cells that exist in the central nervous system (CNS) since the early embryonic stage when the nerves and cerebrovascular systems are being formed. During the development of the CNS, microglia regulate the pruning of excess synapses,” explains Assoc. Prof. Yamamoto.

It turns out that, in IDO2 KO mice, microglia in the striatum tend to convert from a ‘surveillant’ type to an ‘ameboid’ type. Since only surveillant microglia oversee the removal of excess neural synapses and controlling synaptic transmission, these synaptic abnormalities plus the dysregulation of BDNF could be responsible for the ASD-like behaviors observed in KO mice. Moreover, chemically restoring the production of IDO2 in genetically modified mice led to behaviors similar to those of normal mice.

Finally, through the genetic analysis of 309 clinical brain samples from ASD patients, the team found a case of a 16-year-old girl who had a mutation in the IDO2 gene. It is possible that her symptoms could be at least partially explained by alterations in IDO2.

Taken together, the findings of this study could serve as a steppingstone to understand the genetic and biochemical nature of certain psychiatric or neurodevelopmental disorders. “This work provides valuable insights into the pathophysiology associated with IDO2, although further research should be performed to clarify the underlying mechanisms in more detail,” concludes Assoc. Prof. Yamamoto, with eyes on the future.

Let us hope more studies on IDO2 and tryptophan-metabolizing enzymes lead to a better understanding of how autism develops and manifests.

 

***


Reference

 

DOI: https://doi.org/10.1111/febs.17019

 

About Fujita Health University
Fujita Health University is a private university situated in Toyoake, Aichi, Japan. It was founded in 1964 and houses one of the largest teaching university hospitals in Japan in terms of the number of beds. With over 900 faculty members, the university is committed to providing various academic opportunities to students internationally. Fujita Health University has been ranked eighth among all universities and second among all private universities in Japan in the 2020 Times Higher Education (THE) World University Rankings. THE University Impact Rankings 2019 visualized university initiatives for sustainable development goals (SDGs). For the “good health and well-being” SDG, Fujita Health University was ranked second among all universities and number one among private universities in Japan. The university became the first Japanese university to host the "THE Asia Universities Summit" in June 2021. The university’s founding philosophy is “Our creativity for the people (DOKUSOU-ICHIRI),” which reflects the belief that, as with the university’s alumni and alumnae, current students also unlock their future by leveraging their creativity.

Website: https://www.fujita-hu.ac.jp/en/index.html

 

About Associate Professor Yasuko Yamamoto from Fujita Health University
Yasuko Yamamoto received a Ph.D. in Health Sciences from the Graduate School of Medicine at Osaka University. After working at the Kagawa Prefectural College of Health Sciences for over 6 years and at Kyoto University for a decade, she joined Fujita Health University in 2016, where she currently serves as Associate Professor. She specializes in the pathobiochemistry of diverse diseases, such as neuropsychiatric disorders, rheumatoid arthritis, diabetes, and COVID-19. She has published over 85 papers on these topics.

 

Funding information
This work was partly supported by JSPS KAKENHI Grant Numbers 19K07490, 18K19761, and 17H04252 and a Research Grant from the Smoking Research Foundation.

END


[Attachments] See images for this press release:
Understanding the role of a new enzyme in the development of autism spectrum disorder Understanding the role of a new enzyme in the development of autism spectrum disorder 2

ELSE PRESS RELEASES FROM THIS DATE:

An innovative approach for evaluating muscle coordination and fatigue

An innovative approach for evaluating muscle coordination and fatigue
2024-01-04
Surface electromyography (sEMG) is a traditional method used to measure the electrical activity of muscles during physical activity. This method has remained unchanged for over 70 years and involves the use of two standard approaches. The first involves a pair of electrodes—metals that conduct electricity through non-metals—to record from a particular muscle, while the second employs a grid of electrodes arranged in a small rectangular layout in order to measure the potential distribution of intra-muscle activity. However, these approaches only provide a measurement of a single muscle at a time. Thus, limiting our understanding of how our muscles coordinate ...

New theoretical framework unlocks mysteries of synchronization in turbulent dynamics

New theoretical framework unlocks mysteries of synchronization in turbulent dynamics
2024-01-04
Weather forecasting is important for various sectors, including agriculture, military operations, and aviation, as well as for predicting natural disasters like tornados and cyclones. It relies on predicting the movement of air in the atmosphere, which is characterized by turbulent flows resulting in chaotic eddies of air. However, accurately predicting this turbulence has remained significantly challenging owing to the lack of data on small-scale turbulent flows, which leads to the introduction of ...

Scientists use high-tech brain stimulation to make people more hypnotizable

2024-01-04
How deeply someone can be hypnotized — known as hypnotizability — appears to be a stable trait that changes little throughout adulthood, much like personality and IQ. But now, for the first time, Stanford Medicine researchers have demonstrated a way to temporarily heighten hypnotizablity — potentially allowing more people to access the benefits of hypnosis-based therapy. In the new study, to be published Jan. 4 in Nature Mental Health, the researchers found that less than two minutes of electrical ...

Salk scientists uncover key brain pathway mediating panic disorder symptoms

Salk scientists uncover key brain pathway mediating panic disorder symptoms
2024-01-04
LA JOLLA (January 4, 2024)—Overwhelming fear, sweaty palms, shortness of breath, rapid heart rate—these are the symptoms of a panic attack, which people with panic disorder have frequently and unexpectedly. Creating a map of the regions, neurons, and connections in the brain that mediate these panic attacks can provide guidance for developing more effective panic disorder therapeutics. Now, Salk researchers have begun to construct that map by discovering a brain circuit that mediates panic ...

Gender parity in autism research: Synaptic similarities challenge focus on male models

2024-01-04
New study reveals striking similarities in synaptic abnormalities and behavioral patterns between male and female mouse models of autism spectrum disorder (ASD). The study challenges the traditional focus on male subjects in ASD research and highlights the critical importance of including both sexes in investigations. This finding urges a pivotal shift in the scientific community's approach to understanding and addressing ASD, emphasizing the necessity of considering both males and females to comprehensively ...

Tiredness experienced by Long-COVID patients has a physical cause

2024-01-04
Researchers from Amsterdam UMC and Vrije Universiteit Amsterdam (VU) have discovered that the persistent fatigue in patients with long-COVID has a biological cause, namely mitochondria in muscle cells that produce less energy than in healthy patients. The results of the study were published today in Nature Communications. "We're seeing clear changes in the muscles in these patients," says Michèle van Vugt, Professor of Internal Medicine at Amsterdam UMC.  25 long-COVID patients and 21 healthy ...

New roles for autophagy genes in cellular waste management and aging

2024-01-04
Autophagy, which declines with age, may hold more mysteries than researchers previously suspected. In the January 4th issue of Nature Aging, it was noted that scientists from the Buck Institute, Sanford Burnham Prebys and Rutgers University have uncovered possible novel functions for various autophagy genes, which may control different forms of disposal including misfolded proteins—and ultimately affect aging. “While this is very basic research, this work is a reminder that it is critical for us to understand whether we have the whole story about the different genes that have been related to aging or age-related diseases,” said Professor ...

The surprisingly resourceful ways bacteria thrive in the human gut

2024-01-04
The gut microbiome is so useful to human digestion and health that it is often called an extra digestive organ. This vast collection of bacteria and other microorganisms in the intestine helps us break down foods and produce nutrients or other metabolites that impact human health in a myriad of ways. New research from the University of Chicago shows that some groups of these microbial helpers are amazingly resourceful too, with a large repertoire of genes that help them generate energy for themselves and potentially influence human health as well. The paper, published January 4, 2024, in Nature ...

Genomic ‘tweezer’ ushers in a new era of precision in microbiome research

Genomic ‘tweezer’ ushers in a new era of precision in microbiome research
2024-01-04
In a landmark study recently published in the journal Nature Methods, researchers at the Icahn School of Medicine at Mount Sinai have unveiled mEnrich-seq—an innovative method designed to substantially enhance the specificity and efficiency of research into microbiomes, the complex communities of microorganisms that inhabit the human body.  Unlocking the Microbial World with mEnrich-seq Microbiomes play a crucial role in human health. An imbalance or a decrease in the variety of microbes in our bodies can lead to an increased risk of several diseases. However, in many microbiome applications, the focus is on studying specific ...

Scientists tame chaotic protein fueling 75% of cancers

Scientists tame chaotic protein fueling 75% of cancers
2024-01-04
Meet MYC, the shapeless protein responsible for making the majority of human cancer cases worse. UC Riverside researchers have found a way to rein it in, offering hope for a new era of treatments.   In healthy cells, MYC helps guide the process of transcription, in which genetic information is converted from DNA into RNA and, eventually, into proteins. “Normally, MYC’s activity is strictly controlled. In cancer cells, it becomes hyper active, and is not regulated properly,” said UCR associate professor of chemistry Min Xue.  “MYC is less like food for cancer cells and more like a steroid ...

LAST 30 PRESS RELEASES:

Impact of pollutants on pollinators, and how neural circuits adapt to temperature changes

Researchers seek to improve advanced pain management using AI for drug discovery

‘Neutron Nexus’ brings universities, ORNL together to advance science

Early release from NEJM Evidence

UMass Amherst astronomer leads science team helping to develop billion-dollar NASA satellite mission concept

Cultivating global engagement in bioengineering education to train students skills in biomedical device design and innovation

Life on Earth was more diverse than classical theory suggests 800 million years ago, a Brazilian study shows

International clean energy initiative launches global biomass resource assessment

How much do avoidable deaths impact the economy?

Federal government may be paying twice for care of veterans enrolled in Medicare Advantage plans

New therapeutic target for cardiac arrhythmias emerges

UC Irvine researchers are first to reveal role of ophthalmic acid in motor function control

Moffitt study unveils the role of gamma-delta T cells in cancer immunology

Drier winter habitat impacts songbirds’ ability to survive migration

Donors enable 445 TPDA awards to Neuroscience 2024

Gut bacteria engineered to act as tumor GPS for immunotherapies

Are auditory magic tricks possible for a blind audience?

Research points to potential new treatment for aggressive prostate cancer subtype

Studies examine growing US mental health safety net

Social risk factor domains and preventive care services in US adults

Online medication abortion direct-to-patient fulfillment before and after the Dobbs v Jackson decision

Black, Hispanic, and American Indian adolescents likelier than white adolescents to be tested for drugs, alcohol at pediatric trauma centers

Pterosaurs needed feet on the ground to become giants

Scientists uncover auditory “sixth sense” in geckos

Almost half of persons who inject drugs (PWID) with endocarditis will die within five years; women are disproportionately affected

Experimental blood test improves early detection of pancreatic cancer

Groundbreaking wastewater treatment research led by Oxford Brookes targets global challenge of toxic ‘forever chemicals’

Jefferson Health awarded $2.4 million in PCORI funding

Cilta-cel found highly effective in first real-world study

Unleashing the power of generative AI on smart collaborative innovation network platform to empower research and technology innovation

[Press-News.org] Understanding the role of a new enzyme in the development of autism spectrum disorder
Mutations in a tryptophan-metabolizing enzyme might affect dopamine regulation and lead to psychiatric disorders