PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Next-generation batteries could go organic, cobalt-free for long-lasting power

2024-01-18
(Press-News.org) In the switch to “greener” energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt — a metal whose extraction has high environmental and societal costs. Now, researchers in ACS Central Science report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.

Today, lithium-ion batteries power everything from cell phones to laptops to electric vehicles. One of the limiting factors for realizing a global shift to energy produced by renewable sources — particularly for the transition from gasoline-powered cars to electric vehicles — is the scarcity and mining difficulty of the metals, such as cobalt, nickel and magnesium, used in rechargeable battery cathode manufacturing. Previous researchers have developed cathodes from more abundant and lower cost carbon-containing materials, including organosulfur and carbonyl compounds, but those prototypes couldn’t match the energy output and stability of traditional lithium-ion batteries.

So, Mircea Dincă and his colleagues wanted to see if other carbon-based cathode materials could be more successful. They may have found a worthy candidate in bis-tetraaminobenzoquinone (TAQ). TAQ molecules form layered solid-state structures than can potentially compete with traditional cobalt-based cathode performance.

Building on their prior work that showed TAQ’s effectiveness as a supercapacitor material, Dincă’s team tested the compound in a cathode for lithium-ion batteries. To improve cycling stability and to increase TAQ adhesion to the cathode’s stainless-steel current collector, they added cellulose- and rubber-containing materials to the TAQ cathode. In the researchers’ proof-of-concept demonstration, the new composite cathode cycled safely more than 2,000 times, delivered an energy density higher than most cobalt-based cathodes and charged-discharged in as little as six minutes. The TAQ-based cathodes need additional testing before they appear on the market, but the researchers are optimistic that they could enable the high-energy, long-lasting and fast-charging batteries needed to help speed a global transition to a renewable energy future that’s cobalt- and nickel-free.

The authors acknowledge funding from Automobili Lamborghini S.p.A.

The authors have filed patent applications on this technology.

###

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note: ACS does not conduct research but publishes and publicizes peer-reviewed scientific studies.

Follow us: Twitter | Facebook | LinkedIn | Instagram

END



ELSE PRESS RELEASES FROM THIS DATE:

FAU Engineering receives $2.6 million NSF grant for CyberCorps student scholarship program

FAU Engineering receives $2.6 million NSF grant for CyberCorps student scholarship program
2024-01-18
The College of Engineering and Computer Science of Florida Atlantic University received a $2.6 million grant from the National Science Foundation (NSF) to establish a scholarship program in the burgeoning and critical field of cybersecurity. The NSF’s CyberCorps® Scholarship for Service program seeks to increase the number of qualified cybersecurity professionals working for federal, state, local, territorial and tribal governments. The program is managed by the NSF in collaboration with the United States Office of Personnel Management and the U.S. Department of Homeland Security. FAU is one of only six universities ...

AI harnesses tumor genetics to predict treatment response

AI harnesses tumor genetics to predict treatment response
2024-01-18
In a groundbreaking study published on January 18, 2024, in Cancer Discovery, scientists at University of California San Diego School of Medicine leveraged a machine learning algorithm to tackle one of the biggest challenges facing cancer researchers: predicting when cancer will resist chemotherapy. All cells, including cancer cells, rely on complex molecular machinery to replicate DNA as part of normal cell division. Most chemotherapies work by disrupting this DNA replication machinery in rapidly dividing tumor ...

AMS 2024 Annual Meeting highlights climate challenges and solutions

2024-01-18
[Boston, MA—January 18, 2023]  The American Meteorological Society’s (AMS) 104th Annual Meeting will gather thousands of people at the Baltimore Convention Center 28 January–1 February to attend the world’s largest annual meeting focused on weather, water, and climate. The AMS is the professional society for everyone in the atmospheric and hydrologic sciences and services, including meteorologists, research scientists, emergency managers, academics, weather broadcasters, and more. “The theme of our 104th Annual Meeting is ‘Living in a Changing Environment,’” says AMS President Brad Colman. “It’s ...

Tackling antibiotic resistance when treating pneumonia

2024-01-18
New research has been published that identifies positive steps towards a better understanding of antimicrobial resistance (AMR), specifically in hospital-acquired pneumonia (HAP). Antimicrobial, or antibiotic resistance, is a growing global issue, yet little is known about how to dose antibiotics to minimise bacteria developing resistance in patients. However, the University of Liverpool is playing a key role in contributing to international efforts to better understand AMR. In a paper published today (Thursday 18 January), ...

Stuck in traffic: Researchers identify cellular traffic jams in a rare disease

2024-01-18
Researchers from McGill University, led by Professor Alanna Watt of the Department of Biology, have identified previously unknown changes in brain cells affected by a neurological disease. Their research, published in eLife, could pave the way to future treatments for the disease. Spinocerebellar ataxia type 6, known as SCA6, is a rare neurological disease that disrupts the function in a part of the brain called the cerebellum, causing difficulties with movement and coordination. The condition results from genetic mutations, ...

Study examines substance use in first responders during the COVID-19 pandemic

Study examines substance use in first responders during the COVID-19 pandemic
2024-01-18
Considerable attention has focused on burnout and mental health of physicians and nurses on the frontline during the COVID-19 pandemic. First responders – law enforcement personnel, firefighters and emergency medical service (EMS) providers, also experienced increased levels of stress, anxiety and depression due to job-related pressures associated with the pandemic. Given their exposure to work-related stress during this time, first responders may have been at considerable risk of developing problematic substance use. However, little is known about the factors associated with first responder drug and alcohol use during the pandemic.  A study by Florida ...

Lighting the path: Exploring exciton binding energies in organic semiconductors

Lighting the path: Exploring exciton binding energies in organic semiconductors
2024-01-18
Organic semiconductors are a class of materials that find applications in various electronic devices owing to their unique properties. One attribute that influences the optoelectronic property of these organic semiconductors is their "exciton binding energy," which is the energy needed to divide an exciton into its negative and positive constituents. Since high binding energies can have a significant impact on the functioning of optoelectronic devices, low binding energies are desirable. This can help in reducing energy losses in devices like organic solar cells. While several methods for designing organic materials with low binding energies have ...

Unlocking the secrets of quasicrystal magnetism: revealing a novel magnetic phase diagram

Unlocking the secrets of quasicrystal magnetism: revealing a novel magnetic phase diagram
2024-01-18
Quasicrystals are intermetallic materials that have garnered significant attention from researchers aiming to advance condensed matter physics understanding. Unlike normal crystals, in which atoms are arranged in an ordered repeating pattern, quasicrystals have non-repeating ordered patterns of atoms. Their unique structure leads to many exotic and interesting properties, which are particularly useful for practical applications in spintronics and magnetic refrigeration. A unique quasicrystal variant, known as the Tsai-type icosahedral quasicrystal (iQC) and their cubic approximant crystals (ACs), display intriguing characteristics. These include long-range ferromagnetic (FM) ...

DNA construction led to unexpected discovery of important cell function

2024-01-18
Researchers at Karolinska Institutet in Sweden have used DNA origami, the art of folding DNA into desired structures, to show how an important cell receptor can be activated in a previously unknown way. The result opens new avenues for understanding how the Notch signalling pathway works and how it is involved in several serious diseases. The study is published in Nature Communications. Notch is a cell receptor that is of great importance to a wide range of organisms and plays a crucial role in many different processes, including early embryonic development in both flies and humans. Notch ...

Why animals shrink over time explained with new evolution theory

2024-01-18
The mystery behind why Alaskan horses, cryptodiran turtles and island lizards shrunk over time may have been solved in a new study.  The new theoretical research proposes that animal size over time depends on two key ecological factors: the intensity of direct competition for resources between species, and the risk of extinction from the environment.  Using computer models simulating evolution, the study, published today (Thursday, 18 January) in communications biology, identifies why some species gradually get smaller, as indicated by fossil records. Dr Shovonlal Roy, an ecosystem modeller from the University of Reading who led the research, ...

LAST 30 PRESS RELEASES:

Ultrasound pinpoints vascular complications from cosmetic fillers

Human gene maps are biased towards European ancestries

Atomically-tailored single atom platforms hold promise for next-generation catalysis

USC study reveals hidden cellular layers in the brain’s memory center

SPHERE’s debris disk gallery: tell-tale signs of dust and small bodies in distant solar systems

Terrestrial biodiversity grows with tree cover in agricultural landscapes

Experts call for AED placement on every commercial aircraft to boost in-flight cardiac arrest survival rates from 6% to up to 70%

“Proton‑iodine” regulation of protonated polyaniline catalyst for high‑performance electrolytic Zn‑I2 batteries

Directional three‑dimensional macroporous carbon foams decorated with WC1−x nanoparticles derived from salting‑out protein assemblies for highly effective electromagnetic absorption

Tropical Australian study sets new standard for Indigenous-led research

Invitation to co-edit a special issue on intelligent additive manufacturing

Success in measuring nano droplets, a new breakthrough in hydrogen, semiconductor, and battery research​

Shopping for two is stressful

Micro/nano‑reconfigurable robots for intelligent carbon management in confined‑space life‑support systems

Long-term antidepressant use surges in Australia, sparking warnings of overprescribing

To bop or to sway? The music will tell you

Neural network helps detect gunshots from illegal rainforest poaching

New evidence questions the benefit of calcium supplements in pregnancy for preventing pre-eclampsia

A molecular ‘reset button’ for reading the brain through a blood test

Why do some lung transplant patients face higher rejection risk?

New study offers a glimpse into 230,000 years of climate and landscape shifts in the Southwest

Gender-specific supportive environment key to cutting female athletes’ injury risks

Overreliance on AI risks eroding new and future doctors’ critical thinking while reinforcing existing bias

Eating disorders in mums-to-be linked to heightened risk of asthma and wheezing in their kids

Global study backs mandatory strength warm-ups for female athletes

Global analysis: Nearly one in five child deaths linked to growth failure

Flood risks in delta cities are increasing, study finds

New strategic support for UK clean industry with £2 million funding boost

Night workers face inequalities in pay, health, safety and dignity

Black carbon from wheat straw burning shown to curb antibiotic resistance spread in farmlands with plastic mulch residues

[Press-News.org] Next-generation batteries could go organic, cobalt-free for long-lasting power