PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Resting boosts performance of lithium metal batteries

2024-02-07
(Press-News.org) Next-generation electric vehicles could run on lithium metal batteries that go 500 to 700 miles on a single charge, twice the range of conventional lithium-ion batteries in EVs today.

But lithium metal technology has serious drawbacks: The battery rapidly loses its capacity to store energy after relatively few cycles of charging and discharging – highly impractical for drivers who expect rechargeable electric cars to operate for years.

Scientists have been testing a variety of new materials and techniques to improve the battery’s cycle life. Now, Stanford University researchers have discovered a low-cost solution: simply drain the battery and let it rest for several hours. This straightforward approach, described in a study published Feb. 7 in the journal Nature, restored battery capacity and boosted overall performance.

“We were looking for the easiest, cheapest, and fastest way to improve lithium metal cycling life,” said study co-lead author Wenbo Zhang, a Stanford PhD student in materials science and engineering. “We discovered that by resting the battery in the discharged state, lost capacity can be recovered and cycle life increased. These improvements can be realized just by reprogramming the battery management software, with no additional cost or changes needed for equipment, materials, or production flow.”

The results of the study could provide EV manufacturers practical insights on adapting lithium metal technology to real-world driving conditions, said senior author Yi Cui, the Fortinet Founders Professor of Materials Science and Engineering in the School of Engineering, and professor of energy and engineering in the Stanford Doerr School of Sustainability.

“Lithium metal batteries have been the subject of a lot of research,” said Cui. “Our findings can help guide future studies that will aid in the advancement of lithium metal batteries towards widespread commercial adaptation.”

Lithium metal vs. lithium-ion technology A conventional lithium-ion battery consists of two electrodes – a graphite anode and a lithium metal oxide cathode – separated by a liquid or solid electrolyte that shuttles lithium ions back and forth.

In a lithium metal battery, the graphite anode is replaced with electroplated lithium metal, which enables it to store twice the energy of a lithium-ion battery in the same amount of space. The lithium metal anode also weighs less than the graphite anode, which is important for EVs. Lithium metal batteries can hold at least a third more energy per pound as lithium-ion.

“A car equipped with a lithium metal battery would have twice the range of a lithium-ion vehicle of equal size – 600 miles per charge versus 300 miles, for example,” said co-lead author Philaphon Sayavong, a PhD student in chemistry. “In EVs, the goal is to keep the battery as lightweight as possible while extending the vehicle range.”

Doubling the range could eliminate range anxiety for drivers who are reluctant to purchase EVs. Unfortunately, continuous charging and discharging causes lithium metal batteries to degrade quickly, rendering them useless for routine driving. When the battery is discharged, micron-sized bits of lithium metal become isolated and get trapped in the solid electrolyte interphase (SEI), a spongy matrix that forms where the anode and electrolyte meet.

“The SEI matrix is essentially decomposed electrolyte,” Zhang explained. “It surrounds isolated pieces of lithium metal stripped from the anode and prevents them from participating in any electrochemical reactions. For that reason, we consider isolated lithium dead.”

Repeated charging and discharging results in the build-up of additional dead lithium, causing the battery to rapidly lose capacity. “An EV with a state-of-the-art lithium metal battery would lose range at a much faster rate than an EV powered by a lithium-ion battery,” Zhang said.

Discharge and rest In previous work, Sayavong and his colleagues discovered that the SEI matrix begins to dissolve when the battery is idle. Based on that finding, the Stanford team decided to see what would happen if the battery was allowed to rest while discharged.

“The first step was to completely discharge the battery so there is zero current running through it,” Zhang said. “Discharging strips all the metallic lithium from the anode, so all you’re left with are inactive pieces of isolated lithium surrounded by the SEI matrix.”

The next step was to let the battery sit idle.

“We found that if the battery rests in the discharged state for just one hour, some of the SEI matrix surrounding the dead lithium dissolves away,” Sayavong said. “So when you recharge the battery, the dead lithium will reconnect with the anode, because there’s less solid mass getting in the way.”

Reconnecting with the anode brings dead lithium back to life, enabling the battery to generate more energy and extend its cycle life.

“Previously, we thought that this energy loss was irreversible,” Cui said. “But our study showed that we can recover lost capacity simply by resting the discharged battery.”

Using time-lapse video microscopy, the researchers visually confirmed the disintegration of residual SEI and subsequent recovery of dead lithium during the resting phase.

Practical applications The average American driver spends about an hour behind the wheel each day, so the idea of resting your car battery for several hours is feasible.

A typical EV may have 4,000 batteries arranged in modules controlled by a battery management system, an electronic brain that monitors and controls battery performance. In a lithium metal battery, the existing management system can be programmed to discharge an individual module completely so that it has zero capacity left.

This approach does not require expensive, new manufacturing techniques or materials, Zhang added.

“You can implement our protocol as fast as it takes you to write the battery management system code,” he said. “We believe that in certain types of lithium metal batteries, discharged-state resting alone can increase EV cycle life significantly.”

Yi Cui is also a professor of photon science at SLAC National Accelerator Laboratory, director of the Sustainability Accelerator in the Stanford Doerr School of Sustainability, and co-director of the StorageX Initiative in the Stanford Precourt Institute for Energy. Other Stanford co-authors are Professor Stacey F. Bent and graduate students Xin Xiao, Solomon T. Oyakhire, Sanzeeda Baig Shuchi, Rafael A. Vilá, David T. Boyle, Sang Cheol Kim, Mun Sek Kim, Sarah E. Holmes, Yusheng Ye, and Donglin Li.

Funding was provided by the U.S. Department of Energy Battery Materials Research Program and Battery500 Consortium; the National Academy of Sciences Ford Foundation Fellowships; the National Science Foundation Graduate Research Fellowship Program; and the Enhancing Diversity in Graduate Education (EDGE) and Knight-Hennessy Scholars programs at Stanford.

END


ELSE PRESS RELEASES FROM THIS DATE:

Machine learning models for predicting disability and pain following lumbar disc herniation surgery

2024-02-07
About The Study: The findings of this study including 22,000 surgical cases suggest that machine learning models can inform about individual prognosis and aid in surgical decision-making to ultimately reduce ineffective and costly spine care. Authors: Bjørnar Berg, Ph.D., of Oslo Metropolitan University in Oslo, is the corresponding author.  To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/  (doi:10.1001/jamanetworkopen.2023.55024) Editor’s ...

Using cancer’s strength to fight against it

2024-02-07
Current immunotherapies work only against cancers of the blood and bone marrow T cells engineered by Northwestern and UCSF were able to kill tumors derived from skin, lung and stomach in mice Cell therapies can provide long-term immunity against cancer CHICAGO --- Scientists at the UC San Francisco (UCSF) and Northwestern Medicine may have found a way around the limitations of engineered T cells by borrowing a few tricks from cancer itself.  By studying mutations in malignant T cells that cause lymphoma, they zeroed in on one that imparted ...

Trends in stroke thrombolysis care metrics and outcomes by race and ethnicity

2024-02-07
About The Study: In this study of more than 1 million patients with stroke, the Target: Stroke quality initiative was associated with improvement in thrombolysis frequency, timeliness, and outcomes for all racial and ethnic groups. However, disparities persisted, indicating a need for further interventions. Authors: Gregg C. Fonarow, M.D., of the University of California, Los Angeles, is the corresponding author.  To access the embargoed study: Visit our For The Media website at this link ...

New direct links discovered between the brain and its surrounding environment

2024-02-07
In a recent study of the brain’s waste drainage system, researchers from Washington University in St. Louis, collaborating with investigators at the National Institute of Neurological Disorders and Stroke (NINDS), a part of the National Institute of Health (NIH), discovered a direct connection between the brain and its tough protective covering, the dura mater. These links may allow waste fluid to leave the brain while also exposing the brain to immune cells and other signals coming from the dura. This challenges the conventional wisdom which has suggested that the brain is cut off from its ...

Stress influences brain and psyche via immune system

2024-02-07
Chronic stress has far-reaching consequences for our bodies. For example, many stress-related psychiatric illnesses such as depression are associated with changes in the immune system. However, the underlying mechanisms of how these changes affect the brain are still largely unknown. Enzyme from immune cells in the blood affects nerves in the brain An international research team led by the University of Zurich (UZH), and the University Hospital of Psychiatry Zurich (PUK) and the Icahn School of Medicine at Mount Sinai, New York, has now uncovered a novel mechanism. “We were able to show that ...

Mimas' surprise: Tiny moon holds young ocean beneath icy shell

2024-02-07
Hidden beneath the heavily cratered surface of Mimas, one of Saturn's smallest moons, lies a secret: a global ocean of liquid water. This astonishing discovery, led by Dr. Valéry Lainey of the Observatoire de Paris-PSL and published in the journal Nature, reveals a "young" ocean formed just 5 to 15 million years ago, making Mimas a prime target for studying the origins of life in our Solar System.  “Mimas is a small moon, only about 400 kilometers in diameter, and its heavily cratered surface gave no hint of the hidden ocean beneath," says Dr Nick Cooper, ...

Quantum materials: Discovered new state of matter with chiral properties

2024-02-07
An international research group has discovered a new state of matter characterized by the existence of a quantum phenomenon called chiral current. These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal. Chirality is a property of extreme importance in science, for example, it is fundamental also to understand DNA. ...

Towards a better understanding of endothelial cell transformation in cancer progression

Towards a better understanding of endothelial cell transformation in cancer progression
2024-02-07
In a new study, Tokyo Medical and Dental University researchers shed light on partial endothelial-to-mesenchymal transition in the tumor microenvironment Tokyo, Japan - Endothelial-mesenchymal transition (EndoMT, also termed as EndMT), a biological process resulting in the formation of mesenchymal (or lineage-committed) phenotypes from endothelial cells (lining blood vessels), plays a crucial role in tumor progression. Despite the important role of EndoMT, the underlying mechanism and characteristics of cells in intermediate/partial EndoMT remain largely unexplored. Now, researchers from Japan have developed a system to study these EndoMT stages.  In ...

After prison, perpetrators of genocide say they’ve changed

2024-02-07
COLUMBUS, Ohio – After serving decades in prison, Rwandans convicted of crimes of genocide returned to their communities articulating a “narrative of redemption,” saying they were good people, despite their past crimes.   And they were hopeful about their prospects for reintegrating into their communities.   Many of these former prisoners had been convicted of murder, often of their own neighbors, connected to the 1994 genocide in Rwanda. But they said they had changed – even while minimizing their role in the killings.   In ...

Japan's electric vehicle transition by 2035 may be insufficient to combat the climate crisis, but there are solutions

Japans electric vehicle transition by 2035 may be insufficient to combat the climate crisis, but there are solutions
2024-02-07
Fukuoka, Japan—Researchers at Kyushu University have found that Japan's current policy of stopping the sale of gas vehicles by 2035 and transitioning only to hybrids and electric vehicles may be insufficient to reduce the country's CO2 emissions and prevent it from reaching its decarbonization target goals. In fact, emissions may temporarily increase. The team's analysis showed that along with the policy, the Japanese government must simultaneously work to increase production of clean ...

LAST 30 PRESS RELEASES:

Study published in NEJM Catalyst finds patients cared for by MedStar Health’s Safe Babies Safe Moms program have better outcomes in pregnancy, delivery, and postpartum

Octopus arms have segmented nervous systems to power extraordinary movements

Protein shapes can help untangle life’s ancient history

Memory systems in the brain drive food cravings that could influence body weight

Indigenous students face cumbersome barriers to attaining post-secondary education

Not all Hot Jupiters orbit solo

Study shows connection between childhood maltreatment and disease in later life

Discovery of two planets sheds new light on the formation of planetary systems

New West Health-Gallup survey finds incoming Trump administration faces high public skepticism over plans to lower healthcare costs

Reading signs: New method improves AI translation of sign language

Over 97 million US residents exposed to unregulated contaminants in their drinking water

New large-scale study suggests no link between common brain malignancy and hormone therapy

AI helps to identify subjective cognitive decline during the menopause transition

Machine learning assisted plasmonic absorbers

Healthy lifestyle changes shown to help low back pain

Waking up is not stressful, study finds

Texas A&M AgriLife Research aims for better control of widespread tomato spotted wilt virus

THE LANCET DIABETES & ENDOCRINOLOGY: Global Commission proposes major overhaul of obesity diagnosis, going beyond BMI to define when obesity is a disease.

Floating solar panels could support US energy goals

Long before the L.A. fires, America’s housing crisis displaced millions

Breaking barriers: Collaborative research studies binge eating disorders in older Hispanic women

UVA receives DURIP grant for cutting-edge ceramic research system

Gene editing extends lifespan in mouse model of prion disease

Putting a lid on excess cholesterol to halt bladder cancer cell growth

Genetic mutation linked to higher SARS-CoV-2 risk

UC Irvine, Columbia University researchers invent soft, bioelectronic sensor implant

Harnessing nature to defend soybean roots

Yes, college students gain holiday weight too—but in the form of muscle not fat

Beach guardians: How hidden microbes protect coastal waters in a changing climate

Rice researchers unlock new insights into tellurene, paving the way for next-gen electronics

[Press-News.org] Resting boosts performance of lithium metal batteries