(Press-News.org)
Nagoya University researchers and their colleagues in Japan have found that middle-age obesity is caused by age-related changes in the shape of neurons in the hypothalamus, a region of the brain that controls metabolism and appetite.
A protein called melanocortin-4 receptor (MC4R) detects overnutrition and regulates metabolism and appetite to prevent obesity. According to their study in rats, MC4Rs were concentrated in primary cilia (antenna-like structures) that extend from a couple of groups of hypothalamic neurons. The study also showed that the primary cilia became shorter with age, which decreased MC4Rs accordingly, resulting in weight gain.
“We believe that a similar mechanism exists in humans as well,” said Professor Kazuhiro Nakamura of the Nagoya University Graduate School of Medicine, the lead author of the study. “We hope our finding will lead to a fundamental treatment for obesity.” The researchers published the results of the study in the journal Cell Metabolism.
As we get older, we become more prone to being overweight and obesity. Obese people are more susceptible to diabetes, hyperlipidemia, and other chronic diseases. Previous studies have suggested that middle-age weight gain is caused by a decline in overall metabolism due to aging, but the mechanism was unclear.
A research team of the Nagoya University Graduate School of Medicine, in collaboration with researchers from Osaka University, the University of Tokyo, and the Nagoya University Research Institute of Environmental Medicine, conducted a study focusing on MC4Rs.
MC4Rs stimulate metabolism and suppress food intake in response to an overeating signal from melanocortin. Initially, the research team examined the distribution of MC4Rs in the rat brain by utilizing an antibody they had developed specifically to make MC4Rs visible. They found that MC4Rs are present exclusively in primary cilia of specific groups of hypothalamic neurons.
The team next investigated the length of the primary cilia that had MC4Rs (MC4R+ cilia) in the brains of 9-week-old (young) rats and 6-month-old (middle-age) rats. The team found that MC4R+ cilia in middle-aged rats were significantly shorter than those in young rats. Accordingly, the metabolism and the fat-burning capacity of middle-aged rats were much lower than those of young rats.
The team next analyzed MC4R+ cilia in rats under different dietary conditions. The results showed that MC4R+ cilia in rats on a normal diet gradually shortened with age. On the other hand, MC4R+ cilia in rats on a high-fat diet shortened at a faster pace, while those in rats on a restricted diet shortened at a slower pace.
Interestingly, the team also found that MC4R+ cilia that once disappeared with age were regenerated in rats raised under two months of dietary restriction.
In the study, the team also used genetic technologies to make MC4R+ cilia shorter in young rats. These rats showed increased food intake and decreased metabolism, leading to weight gain.
The team also administered a hormone called leptin to the brains of rats with artificially shortened MC4R+ cilia. Leptin is thought to help reduce food intake. Surprisingly, however, their appetite was not reduced, indicating that leptin could not exert anti-obesity effects.
"This phenomenon, called leptin resistance, is often observed in obese human patients as well. This is an obstacle to the treatment of obesity, but the cause has long been unknown," explained Dr. Manami Oya, the first author of the study.
“In obese patients, adipose tissue secretes excessive leptin, which triggers the chronic action of melanocortin. Our study suggests that this may promote the age-related shortening of MC4R+ cilia and put animals into a downward spiral where melanocortin becomes ineffective, increasing the risk of obesity."
The study concluded that the age-related shortening of MC4R+ cilia causes middle-age obesity and leptin resistance in rats. The researchers demonstrated that dietary restriction is one method to prevent and treat overweight and obesity. Prof. Nakamura said, “Moderate eating habits could maintain MC4R+ cilia long enough to keep the brain’s anti-obesity system in good shape even as we age.”
The study, "Age-related ciliopathy: Obesogenic shortening of melanocortin-4 receptor-bearing neuronal primary cilia," was published online in Cell Metabolism on March 6, 2024, at DOI: 10.1016/j.cmet.2024.02.010.
END
Recently, Nano Research announced awardees of the 2023 Nano Research Young Innovators (NR45) Awards in Bio-inspired Nanomaterials. Thirty-three outstanding young investigators under the age of 45 were selected for their extraordinary contributions in developing bio-inspired nanomaterials with applications spanning clean energy, human healthcare, monitoring, and disease treatments. They were selected through a competitive process by an award committee from Nano Research’s editorial board. Congratulations to all the 33 awardees in 2023!
The NR45 Awards ...
A medical waste treatment system, which is capable of 99.9999 percent sterilization by using high-temperature and high-pressure steam, has been developed for the first time in the country.
The Korea Institute of Machinery and Materials (President Seog-Hyeon Ryu, hereinafter referred to as KIMM), an institute under the jurisdiction of the Ministry of Science and ICT, has succeeded in developing an on-site-disposal type medical waste sterilization system that can help to resolve the problem caused by medical waste, which has become a national and social issue as the volume of medical waste continues ...
A research team, affiliated with UNIST, has unveiled for the first time a new principle of motion in the microworld, where objects can move in a directed manner simply by changing their sizes periodically within a substance known as liquid crystal. Led by Professor Jonwoo Jeong and his research team in the Department of Physics at UNIST, this discovery is poised to have far-reaching implications across various research fields, including the potential development of miniature robots in the future.
In their research, the team observed that air bubbles within ...
A four-year study by Dartmouth researchers captures the most in-depth data yet on how college students' self-esteem and mental health fluctuates during their four years in academia, identifying key populations and stressors that the researchers say administrators could target to improve student well-being.
The study also provides among the first real-time accounts of how the coronavirus pandemic affected students' behavior and mental health. The stress and uncertainty of COVID-19 resulted in long-lasting behavioral changes that persisted as a "new normal" even as the pandemic diminished, including feeling more stressed, less socially engaged, and sleeping more.
The ...
Participation in recreational activities — including golfing, gardening or yard work, woodworking and hunting — may be associated with an increase in a person’s risk for developing amyotrophic lateral sclerosis, or ALS, a Michigan Medicine study finds.
While many activities were associated with increased ALS risk, several were sex specific. The results are published in the Journal of the Neurological Sciences.
“We know that occupational risk factors, like working in manufacturing and trade industries, are linked to an increased risk for ALS, and this adds to a growing literature that recreational activities may also represent ...
Is there a way to stick hard and soft materials together without any tape, glue or epoxy? A new study published in ACS Central Science shows that applying a small voltage to certain objects forms chemical bonds that securely link the objects together. Reversing the direction of electron flow easily separates the two materials. This electroadhesion effect could help create biohybrid robots, improve biomedical implants and enable new battery technologies.
When an adhesive is used to attach two things, it binds the surfaces either through mechanical or electrostatic forces. But sometimes those attractions or bonds are difficult, if not ...
A new study reveals that many people living in extreme poverty in low- and middle-income countries (LMICs) have conditions that lead to heart disease, the world’s #1 cause of death — overturning ‘conventional wisdom’.
In the largest analysis of its kind exploring the relationship between poverty and cardiovascular disease (CVD) risk factors, experts discovered a high prevalence of hypertension, diabetes, smoking, obesity, and dyslipidemia in LMICs regardless of income —yet most adults living in extreme poverty were not treated for these CVD-related conditions.
An international group of researchers note that their findings, ...
A study led by the Barcelona Institute for Global Health (ISGlobal), a centre supported by the "la Caixa" Foundation, and the Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS), has consistently estimated daily ambient concentrations of PM2.5, PM10, NO2 and O3 across a large ensemble of European regions between 2003 and 2019 based on machine learning techniques. The aim was to assess the occurrence of days exceeding the 2021 guidelines of the World Health Organization (WHO) for one or multiple pollutants, referred to as “unclean air days”.
The ...
SPOKANE, Wash. – Exposure to several combinations of toxic atmospheric pollutants may be triggering asthma symptoms among children, a recent analysis suggests.
The study, published in the journal Science of the Total Environment, showed that 25 different combinations of air pollutants were associated with asthma symptoms among 269 elementary school children diagnosed with asthma in Spokane, Washington. In line with previous research, the Washington State University-led study revealed a socioeconomic disparity—with one group of children from a lower-income neighborhood exposed to more toxic combinations, a total of 13 of the 25 ...
LA JOLLA, CA—Hitting targets embedded within the cell membrane has long been difficult for drug developers due to the membrane’s challenging biochemical properties. Now, Scripps Research chemists have demonstrated new custom-designed proteins that can efficiently reach these “intramembrane” targets.
In their study, published March 13, 2024, in Nature Chemical Biology, the researchers used a unique computer-based approach to design novel proteins targeting the membrane-spanning region of the erythropoietin (EPO) receptor, which controls red blood cell production and can go awry in cancers. In addition ...