(Press-News.org) Osaka, Japan – Antisense oligonucleotides (ASOs) are next-generation drugs that can treat disease by blocking the transfer of harmful messages from our genes. In people with cancer, ASOs have the potential to block messages that encourage the growth and spread of the tumor. However, ASOs aren’t used for treating cancer yet. They must first get delivered inside cancer cells, but the cancer cells won’t let them in.
Finding an effective ASO delivery system is a major challenge. Cancer cells have gatekeeper molecules that stop unwanted substances from entering. Although investigators have tried many ways of getting ASOs past the gatekeepers, success has been limited.
Now, in a study recently published in the journal Nucleic Acids Research, researchers from Osaka University have discovered a way to deliver ASOs to their targets inside cancer cells. The team synthesized a new compound, named L687, which opens specific calcium permeable channels on the surface of cancer cells. When the calcium flows into cells through the open channels it tells the cells to let in the ASOs.
“We discovered that we could selectively activate the TRPC3/C6 calcium permeable channels1) with the activator L687,” explains lead author Hiroto Kohashi. “We then found that combination treatment with L687 and ASO promoted efficient uptake of ASO into cancer cells during laboratory tests and tumor cells inside the mouse. As a result, target gene activity was suppressed and ASO efficacy was enhanced.”
Until now, ASOs have mainly been used to treat incurable diseases and had to be delivered into the liver or spinal fluid. According to the Osaka team’s research, L687 is an effective drug delivery system that may extend the benefits of ASO treatment to other parts of the body.
“We hope that the results of our research will lead to significant progress in the development and delivery of ASOs and similar gene-targeting drugs for treating cancer,” says senior author Masahito Shimojo.
The team believes that L687 could be a particularly effective way of delivering ASO therapy to lung or prostate cancers. These cancers have many TRPC3/C6 calcium permeable channels1) that can be opened by L687, potentially revealing new targets for these next-generation therapies.
1) TRPC3/C6 channels belong to a Transient Receptor Potential Canonical (TRPC) Channel subfamily of a TRP channel superfamily.
###
The article, “A novel transient receptor potential C3/C6 selective activator induces the cellular uptake of antisense oligonucleotides,” was published in Nucleic Acids Research at DOI: https://doi.org/10.1093/nar/gkae245.
About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.
Website: https://resou.osaka-u.ac.jp/en
END
Next-generation treatments hitch a ride into cancer cells
Researchers from Osaka University discover that opening a channel into cancer cells helps antisense oligonucleotide drugs reach their targets.
2024-04-16
ELSE PRESS RELEASES FROM THIS DATE:
Unraveling the role of DlBGAL9 and AGL61/80 in Longan somatic embryogenesis and heat stress tolerance: A multi-omics approach
2024-04-16
A research team has unveiled 20 β-galactosidase (BGAL) genes within the longan genome, highlighting their crucial roles in embryogenic development and heat stress adaptation. Particularly, the research team spotlighted DlBGAL9, activated by transcription factors DlAGL61 and DlAGL80, as pivotal in enhancing β-galactosidase activity for cell wall thickening and stress response. These discoveries not only deepen our understanding of BGAL's function in plant development and stress mechanisms but also open pathways for agricultural innovations to improve crop resilience and productivity through genetic ...
Decoding pecan pollination: A dive into the chloroplast genome of 'Xinxuan-4' and its impact on cultivar diversity and efficiency
2024-04-16
The chloroplast (cp) is critical for various biological functions in plants, such as photosynthesis and stress responses, with its genome offering simpler analysis and sequencing due to its size and reduced homologous influence. This genome's stability and unique features have made it essential for species identification and understanding plant phylogeny. In the context of Carya illinoinensis, or pecan, a key nut crop in China, there's an observed pollination deficiency exacerbated by the timing of pollen release in cultivars like 'Pawnee'. Recent research has expanded to include the cp genomes of various C. illinoinensis cultivars, aiding ...
KD-crowd: A knowledge distillation framework for learning from crowds
2024-04-16
Crowdsourcing efficiently delegates tasks to crowd workers for labeling, though their varying expertise can lead to errors. A key task is estimating worker expertise to infer true labels. However, the noise transition matrix-based methods for modeling worker expertise often overfit annotation noise due to oversimplification or inaccurate estimations.
To solve the problems, a research team led by Shao-Yuan LI published their new research on 12 Mar 2024 in Frontiers of Computer Science co-published by Higher Education Press and Springer Nature.
The team proposed a knowledge distillation-based framework KD-Crowd, which leverages noise-model-free ...
Can animals count?
2024-04-16
HONG KONG (16 April 2024)—A groundbreaking discovery that appears to confirm the existence of discrete number sense in rats has been announced by a joint research team from City University of Hong Kong (CityUHK) and The Chinese University of Hong Kong (CUHK).
The findings offer a crucial animal model for investigating the neural basis of numerical ability and disability in humans, the Hong Kong-based researchers say.
This innovative study deployed a numerical learning task, brain manipulation techniques and AI modelling to tackle an ongoing debate about whether rats can count, says Professor Yung Wing-ho, Chair Professor of Cognitive Neuroscience at CityUHK, who ...
Australian media need generative AI policies to help navigate misinformation and disinformation
2024-04-16
New research into generative AI images shows only over a third of media organisations surveyed at the time of research have an image-specific AI policy in place.
The study, led by RMIT University in collaboration with Washington State University and the QUT Digital Media Research Centre, interviewed 20 photo editors or related roles from 16 leading public and commercial media organisations across Europe, Australia and the US about their perceptions of generative AI technologies in visual journalism.
Lead researcher and RMIT Senior Lecturer, Dr TJ Thomson, said while most staff interviewed ...
Illuminating the path to hearing recovery
2024-04-16
Professor Yunje Cho’s research team from the Department of Life Sciences at Pohang University of Science and Technology (POSTECH, Republic of Korea) has collaborated with Professor Kwang Pyo Kim’s group from the Department of Applied Chemistry at Kyung Hee University (KHU, ROK), Professor Vsevolod Katritch’s team from the University of Southern California (USC, USA), and Professor Carol V. Robinson from the University of Oxford (UK) to uncover the mysteries surrounding a specific receptor protein associated with hearing. Their findings have recently been published in the online edition of Nature Structural & Molecular Biology.
Deep ...
Unlocking the secrets of fruit quality: How anthocyanins and acidity shape consumer preferences and market value
2024-04-16
A research team reviews the critical relationship between the accumulation of anthocyanins and organic acids in fruits, highlighting how these factors influence fruit color and consumer appeal through changes in vacuolar pH. The analysis focused on the transcription factors (TFs) responsible for the co-regulation of genes affecting these quality traits, aiming to enhance fruit marketability. By establishing a genetic link and identifying the regulatory mechanisms involved, the team provides a roadmap for breeders to target specific traits for modification. Although progress has been made, the review underlines the ...
Evidence for reversible oxygen ion movement during electrical pulsing: enabler of the emerging ferroelectricity in binary oxides
2024-04-16
Ferroelectric binary oxides thin films are garnering attention for their superior compatibility over traditional perovskite-based ferroelectric materials. Its compatibility and scalability within the CMOS framework make it an ideal candidate for integrating ferroelectric devices into mainstream semiconductor components, including next-generation memory devices and various logic devices such as Ferroelectric Field-effect Transistor, and Negative Capacitance Field-effect Transistor. It has been reported that challenges ...
Revolutionizing Citrus cultivation: The superior tolerance and growth vigor of 'Shuzhen No.1' rootstock
2024-04-16
Citrus is the world’s most economically significant fruit crop, but it faces various environmental adversities that restrict its distribution. Grafting is a crucial factor in enhancing citrus productivity. Current research focuses on selecting genetically uniform rootstocks, such as trifoliate orange for its disease resistance. However, issues such as sensitivity to alkalinity and incompatibility with certain cultivars persist.
Addressing these challenges, a study (DOI: 10.48130/frures-0023-0042) published in Fruit Research on 01 February 2024, introduces 'Shuzhen No.1', a novel rootstock ...
Family and media pressure to lose weight in adolescence linked to how people value themselves almost two decades later
2024-04-16
People who as teenagers felt pressure to lose weight from family or from the media, females, people who are not heterosexual, and people experiencing socioeconomic disadvantage, are most at risk of ‘internalised’ weight stigma, new research led by the University of Bristol has found. The study is published in The Lancet Regional Health Europe today [15 April].
‘Internalised’ weight stigma, is when people apply negative obesity-related stereotypes to themselves, such as thinking they are less attractive, less competent, or less valuable as a person because of their weight. This is the first time a study has used a large UK sample to examine who is most at risk.
In ...
LAST 30 PRESS RELEASES:
Making a difference: Efficient water harvesting from air possible
World’s most common heart valve disease linked to insulin resistance in large national study
Study unravels another piece of the puzzle in how cancer cells may be targeted by the immune system
Long-sought structure of powerful anticancer natural product solved by integrated approach
World’s oldest lizard wins fossil fight
Simple secret to living a longer life
Same plant, different tactic: Habitat determines response to climate
Drinking plenty of water may actually be good for you
Men at high risk of cardiovascular disease face brain health decline 10 years earlier than women
Irregular sleep-wake cycle linked to heightened risk of major cardiovascular events
Depression can cause period pain, new study suggests
Wistar Institute scientists identify important factor in neural development
New imaging platform developed by Rice researchers revolutionizes 3D visualization of cellular structures
To catch financial rats, a better mousetrap
Mapping the world's climate danger zones
Emory heart team implants new blood-pumping device for first time in U.S.
Congenital heart defects caused by problems with placenta
Schlechter named Cancer Moonshot Scholar
Two-way water transfers can ensure reliability, save money for urban and agricultural users during drought in Western U.S., new study shows
New issue of advances in dental research explores the role of women in dental, clinical, and translational research
Team unlocks new insights on pulsar signals
Great apes visually track subject-object relationships like humans do
Recovery of testing for heart disease risk factors post-COVID remains patchy
Final data and undiscovered images from NASA’s NEOWISE
Nucleoporin93: A silent protector in vascular health
Can we avert the looming food crisis of climate change?
Alcohol use and antiobesity medication treatment
Study reveals cause of common cancer immunotherapy side effect
New era in amphibian biology
Harbor service, VAST Data provide boost for NCSA systems
[Press-News.org] Next-generation treatments hitch a ride into cancer cellsResearchers from Osaka University discover that opening a channel into cancer cells helps antisense oligonucleotide drugs reach their targets.