- Press Release Distribution

After hundreds of years, study confirms Bermuda now home to cownose rays

Study confirms recent expansion using citizen science and morphological and genetic data

After hundreds of years, study confirms Bermuda now home to cownose rays
( For hundreds of years, the whitespotted eagle ray (Aetobatus narinari) has been considered the only inshore stingray species in Bermuda, until now.

Using citizen science, photographs, on-water observations and the combination of morphological and genetic data, researchers from Florida Atlantic University’s Harbor Branch Oceanographic Institute and collaborators are the first to provide evidence that the Atlantic cownose ray (Rhinoptera bonasus) has recently made a new home in Bermuda.

Because cownose rays (Family Rhinopteridae) are highly migratory and prefer tropical and temperate seas, they are typically restricted to continental shelves. Bermuda, located in the northwest region of the Sargasso Sea, is separated from the continental mainland United States by about 1,000 kilometers.

Results of the study, published in the journal Frontiers in Fish Science, confirm the species as R. bonasus and show that after hundreds of years of natural history records, this is a novel migration of Atlantic cownose rays to Bermuda, a group of oceanic islands and circular-like coral reefs. Currently, it is unknown whether this species in Bermuda is a full-time resident or a seasonal visitor. Based on the islands’ mild sea temperatures and remoteness, the study suggests that cownose rays will likely reside in Bermuda for extended periods.

“We don’t exactly know how many Atlantic cownose rays are actually present in Bermuda and whether it’s a single group that keeps getting re-sighted in various locations or whether the species is more broadly distributed across inshore sounds and harbors,” said Matt Ajemian, Ph.D., lead author, an associate research professor and director of the Fisheries Ecology and Conservation Lab at FAU Harbor Branch.

For the study, FAU Harbor Branch, in collaboration with The University of Southern Mississippi; the Department of Environment and Natural Resources, St. George, Bermuda; the Natural History Museum; the Bermuda Aquarium, Museum and Zoo; and NOAA Fisheries, compiled recent information on cownose rays from Bermuda using informal, personal communications with fisheries officers and staff; photographs by local citizen-scientists, and recent on-water observations and collections conducted by the researchers. Researchers also extracted DNA from tissue samples of five individual cownose rays between 2021 and 2022. 

Outmigration of cownose rays along the Atlantic coast is triggered by various factors such as temperature. Along the Atlantic coast of the U.S., northward migration cues for females and males depend on different factors: sea surface temperature for females and day of year for males.

“Although all of the cownose rays in Bermuda to date are females, we also observed small, immature rays suggesting pupping may have recently occurred here,” said Ajemian. “Moreover, there have been reports of behaviors indicative of copulation, including close following and biting of pectoral fins that suggests male rays are also present in the area.”

The study also offers another probable mechanism that may have facilitated this recent expansion of Atlantic cownose rays to Bermuda – oceanography. 

“Atmospheric conditions including wind and extreme weather events such as storms have been shown to trigger abnormal migratory behaviors in other large marine animals such as loggerhead sea turtles,” said Ajemian.

Interestingly, during the time period preceding the expansion of cownose rays to Bermuda (winter 2010), the North Atlantic Ocean experienced a pronounced southward shift in westerly winds that were also unusually strong and influenced current dynamics in the region. This transition facilitated an unprecedented push of floating Sargassum seaweed toward the eastern Atlantic, including Bermuda.

“This climatological anomaly and associated oceanographic changes may have played a similar role in shifting cownose rays eastward from their established range to Bermuda,” said Ajemian. “Extensive tropical storm activity also occurred between Bermuda and the continental U.S. in the years leading up to the first claimed sighting of cownose rays and could have displaced these animals offshore into the Gulf Stream.

Similarly, in 1609, the Sea Venture, a 17th-century English sailing ship encountered a tropical storm and was shipwrecked with her crew and passengers landing on the uninhabited Bermuda.

“Perhaps these Atlantic cownose rays encountered bad weather just like the Sea Venture did and found their new paradise in Bermuda,” said Ajemian. “In the end, we don’t know if it was a single event or a combination of conditions that brought these animals here, but either way it’s an incredible trip!”

Findings from the study suggest that cownose rays have been in Bermuda for more than a decade since 2012 and observations of the species continue to be sustained today.

“If cownose rays continue to survive in Bermuda waters, the species’ low fertility rate of one pup per year will limit its capacity for rapid population growth, which is why we greatly need a more accurate assessment of the current population size.”

Researchers suggest gleaning this information using systematic aerial surveys and monitoring size class to determine the level of reproductive success of the established population. Furthermore, collecting dietary information will help to identify the prey resources that the species is interacting with and whether any of these are shared with the protected whitespotted eagle ray. Fortunately, the two species co-exist in other regions, but space is limited in Bermuda and so the researchers remain cautious of potential competition.

“We need more research into the potential mechanisms that facilitated the arrival of cownose rays to Bermuda, as this could reveal whether additional introductions of this species and others are possible in the future,” said Ajemian.

Study co-authors are Ceclia Hampton, a graduate student at FAU Harbor Branch; Lauren M. Coleman, The University of Southern Mississippi; Joanna M. Pitt, Ph.D., Department of Environment and Natural Resources, Bermuda; Struan R. Smith, Ph.D., Bermuda Natural History Museum; Christian M. Jones, Ph.D., National Marine Fisheries Service; and Nicole M. Phillips, Ph.D., The University of Southern Mississippi.

- FAU -

About Harbor Branch Oceanographic Institute:
Founded in 1971, Harbor Branch Oceanographic Institute at Florida Atlantic University is a research community of marine scientists, engineers, educators, and other professionals focused on Ocean Science for a Better World. The institute drives innovation in ocean engineering, at-sea operations, drug discovery and biotechnology from the oceans, coastal ecology and conservation, marine mammal research and conservation, aquaculture, ocean observing systems and marine education. For more information, visit


About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 30,000 undergraduate and graduate students across six campuses located along the southeast Florida coast. In recent years, the University has doubled its research expenditures and outpaced its peers in student achievement rates. Through the coexistence of access and excellence, FAU embodies an innovative model where traditional achievement gaps vanish. FAU is designated a Hispanic-serving institution, ranked as a top public university by U.S. News & World Report and a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. For more information, visit





[Attachments] See images for this press release:
After hundreds of years, study confirms Bermuda now home to cownose rays After hundreds of years, study confirms Bermuda now home to cownose rays 2


Scientists uncover promising treatment target for resistant brain cancer

Scientists uncover promising treatment target for resistant brain cancer
For many patients with a deadly type of brain cancer called glioblastoma, chemotherapy resistance is a big problem. Current standard treatments, including surgery, radiation, and chemotherapy using the drug temozolomide, have limited effectiveness and have not significantly changed in the past five decades.  Although temozolomide can initially slow tumor progression in some patients, typically the tumor cells rapidly become resistant to the drug. But now, Virginia Tech researchers with the Fralin Biomedical Research Institute at VTC may ...

Revolutionizing cancer treatment by intracellular protein delivery using hybrid nanotubes

Revolutionizing cancer treatment by intracellular protein delivery using hybrid nanotubes
In today's medical landscape, precision medicine and targeted therapies are gaining traction for their ability to tailor treatments to individual patients while minimizing adverse effects. Conventional methods, such as gene transfer techniques, show promise in delivering therapeutic genes directly to cells to address various diseases. However, these methods face significant drawbacks, hindering their efficacy and safety. Intracellular protein delivery offers a promising approach for developing safer, more targeted, and effective therapies. By directly transferring proteins into target cells, this method circumvents issues such as silencing ...

Chemist Julian West makes C&EN magazine’s ‘Talented 12’ list

Chemist Julian West makes C&EN magazine’s ‘Talented 12’ list
HOUSTON – (May 20, 2024) – Rice University chemist Julian West is one of a dozen up-and-coming young scientists featured in Chemical & Engineering News’ (C&EN) 2024 Talented 12, an annual issue of the weekly news magazine that highlights rising stars across all chemistry research disciplines. West, an assistant professor and the Norman Hackerman-Welch Young Investigator in Rice’s Department of Chemistry, is a synthetic chemist whose lab designs novel chemical reactions. Drawing inspiration from biology, West’s research group has found ways to simplify the production of entire libraries of feedstock chemicals ...

Robot-phobia could exasperate hotel, restaurant labor shortage

VANCOUVER, Wash. – Using more robots to close labor gaps in the hospitality industry may backfire and cause more human workers to quit, according to a Washington State University study. The study, involving more than 620 lodging and food service employees, found that “robot-phobia” – specifically the fear that robots and technology will take human jobs – increased workers’ job insecurity and stress, leading to greater intentions to leave their jobs. The impact was more pronounced with employees who had ...

Study offers new detail on how COVID-19 affects the lungs

Study offers new detail on how COVID-19 affects the lungs
In some severe cases of COVID-19, the lungs undergo extreme damage, resulting in a range of life-threatening conditions like pneumonia, inflammation, and acute respiratory distress syndrome. The root cause of those wide-ranging reactions in the lungs has until now remained unclear. A new study by researchers at Columbia and the Columbia University Irving Medical Center sheds light on this mystery. The study found that ferroptosis, a form of cell death first named and identified at Columbia in 2012, is the major cell death mechanism that underlies COVID-19 lung disease. The finding indicates that deliberately halting ...

Body’s ‘message in a bottle’ delivers targeted cancer treatment

Researchers at Karolinska Institutet in Sweden have succeeded in delivering targeted cancer treatment via small membrane bubbles that our cells use to communicate. A new study published in Nature Biomedical Engineering shows that the treatment reduces tumour growth and improves survival in mice. When our cells communicate, they send out small membrane bubbles known as extracellular vesicles which contain various signalling molecules. Interest in these tiny bubbles, sometimes referred to as the body’s ...

1 in 4 parents say their teen consumes caffeine daily or nearly every day

1 in 4 parents say their teen consumes caffeine daily or nearly every day
ANN ARBOR, Mich. – A quarter of parents report that caffeine is basically part of their teen’s daily life, according to a national poll. Two in three parents think they know whether their teen’s caffeine intake is appropriate and which products have too much caffeine. Yet a third aren’t able to identify recommended caffeine limits, according to the University of Michigan Health C.S. Mott Children’s Hospital National Poll on Children’s Health. “Our report suggests parents may not always be aware of how much they should be limiting caffeine consumption for teens,” said poll co-director and Mott ...

What makes some brown algae shimmer and others not?

What makes some brown algae shimmer and others not?
Compartments of consistently sized, tightly packed microspheres are what makes some brown algae shimmer like opal. The Kobe University discovery not only sheds light on the mechanism behind the alga’s structural coloration, it is also the first to spot the effect in an order of brown algae other than the two where it was known to occur. Most brown algae are indeed yellowish-brown, but scuba divers noticed that a species resembling Sporochnus in the order Sporochnales shimmers like peacock feathers in yellow, ...

Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues

Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues
Decarbonization of automobiles not only requires a shift from gasoline engines to electric motors, but also quality steel parts that help the motors run while lessening the weight of vehicles. High-performance steel materials can offer quieter rides and resist the wear and tear from high-speed rotation in motors. To create them, the process of modifying the steel surface with carbon, nitrogen, and alloy elements needs to be optimized. To understand the interactions between elements in steel, a systematic investigation ...

Tricking the Brain’s inner GPS: Grid cells responses to the illusion of self-location

Tricking the Brain’s inner GPS: Grid cells responses to the illusion of self-location
Dr. Hyuk-June Moon from the Bionics Research Center at the Korea Institute of Science and Technology (KIST), in collaboration with Prof. Olaf Blanke’s team at the Swiss Federal Institute of Technology Lausanne (EPFL), has successfully induced self-location illusions with multi-sensory virtual reality (VR) in the MRI scanner and observed corresponding changes in the human brain's grid cell activity. The brain is known to contain grid cells and place cells, which perform global positioning system (GPS) functions that allow us to recognize where we are. While ...


Grafted cucumbers get a boost: pumpkin's secret to withstanding salinity

Unlocking broccoli's genome: key to enhanced health benefits

New insights into methyl jasmonate-induced saponin biosynthesis in balloon flower

Unraveling the role of ADGRF5: Insights into kidney health and function

JMIR Dermatology accepted for MEDLINE indexing

Reduced infections seen in CLL and NHL patients undergoing immunoglobulin testing and replacement therapy

Human activity: A double-edged sword in the face of drought

Portfolio performance in financial management: apraize, analyze, act.

Landmark Nature Medicine study reports promising new treatment reduces suffering in Sanfilippo syndrome

Membrane protein analogues could accelerate drug discovery

Berkeley Lab researchers advance AI-driven plant root analysis

Cleveland Clinic study shows weight loss surgery cuts risk of heart complications and death in patients with obstructive sleep apnea and obesity

SQUID pries open AI black box

Resiliency shaped by activity in the gut microbiome and brain

Inspired by nature: synthetic nightshade molecule effective against leukemia cells

Promise green hydrogen may not always be fulfilled

Unifying behavioral analysis through animal foundation models

Up to 30 percent more time: Climate change makes it harder for women to collect water

Heart failure in space: scientists calculate potential health threats facing future space tourists in microgravity

Experts offer guidance on talking with children about racism at pediatrician's office

Drugs for HIV and AIDS trialed as brain tumor treatment for first time

Breakthrough in nanoscale force measurement opens doors to unprecedented biological insights

Scientists discover new behavior of membranes that could lead to unprecedented separations

When inflicting pain on others pays off T

The Lancet: Managing gestational diabetes much earlier in pregnancy can prevent complications and improve long-term health outcomes, experts say

New study finds dinosaur fossils did not inspire the mythological griffin

NASA astronaut Woody Hoburg to deliver keynote address at ISSRDC focused on developing a space workforce

Study: Fatigue-management training improved sleep, safety, well-being for Seattle police

Guiding humanity beyond the moon: OHIO’s Nate Szewczyk and students coauthor papers published in “Nature” journals that revolutionize human space biology

Grant supports research to identify barriers to health care for Black women

[] After hundreds of years, study confirms Bermuda now home to cownose rays
Study confirms recent expansion using citizen science and morphological and genetic data