PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A new method for protection from plant pathogens could help support global food security. 

A new method for protection from plant pathogens could help support global food security. 
2024-08-13
(Press-News.org)

By modifying a plant intracellular immune receptor (NLR), researchers have developed a potential new strategy for resistance to rice blast disease, one of the most important diseases threatening global food security. The collaborative team from the UK and Japan have recently published their research in PNAS. This could have implications for future approaches to crop protection and ultimately global food supply stability. 

The research was led from the Department of Biochemistry and Metabolism at the John Innes Centre, with partners at The Sainsbury Laboratory, University of East Anglia, and the Division of Genomics and Breeding, Iwate Biotechnology Research Center, Japan. For a critical part of the study, the researchers worked with the UK’s national synchrotron, Diamond Light Source. Their paper, “Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector”, was published in early July (https://doi.org/10.1073/pnas.2402872121) 

Rice blast disease remains one of the most recalcitrant diseases threatening global food security. This disease is caused by the filamentous fungus, Magnaporthe oryzae and is directly responsible for the loss of more than 30% of harvested rice annually. This pathogen can also cause blast disease on other cereal crops including wheat and barley. 

Current approaches to deployment of durable disease resistance in the field are limited by the pace they can be identified in nature and the evolution of plant pathogens such as the blast fungus that manage to bypass these new resistances. Bioengineering of plant immune receptors such as NLRs has emerged as a new path for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security that can potentially be developed on demand. 

Rafał Zdrzałek, the lead author explains “Pathogens secrete proteins called “effectors” into host cells to manipulate plant metabolism and promote infection. Plants can recognise these effectors using immune receptors called NLRs. However, it’s not always easy to define a receptor naturally recognising any given effector, and even if such receptor exists, pathogen’s effectors can mutate and evolve to escape that recognition. Interactions between pathogen effectors and plant receptors are studied to understand the modus operandi of each pathogen, but also allows us to tinker with the natural plant receptors and alter their recognition specificity.” 

In their publication the researchers focused on engineering an NLR immune receptor from rice to robustly bind a broader, conserved effector family from the blast fungus pathogen. Mark Banfield, the corresponding author, adds; “By recognising a conserved effector family, this engineered immune receptor establishes a proof-of-principle for future delivery of robust, longer-lived blast disease resistance in agriculture. It may be more difficult for the pathogen to evolve to escape recognition. The concept of host-target immune receptor engineering may also be applicable to other plant diseases that rely on delivery of effectors into host cells for their disease-causing properties.” 

By exchanging the heavy metal–associated (HMA) domain of the rice NLR Pikm-1 with that from the rice protein OsHIPP43 (the natural target of the Pwl2 effector), the researchers successfully changed the receptor's response profile to recognise and respond to Pwl2 and the broader Pwl effector family.  

The researchers collected X-ray diffraction data at the I04 beamline of the UK’s national synchrotron, Diamond Light Source to study the details of the interaction between these two proteins. The crystal structure of the complex reveals an extensive interface between Pwl2 and OsHIPP43 (fig. 1). 

Figure 1: Transparent surface representation of Pwl2 (pink) and OsHIPP43 (blue) 

Interestingly, the researchers performed assays to show that the new chimeric protein could recognise different Pwl effectors (fig. 2) in planta.   

Figure 2: Cell death assay showing the Pikm-1OsHIPP43/Pikp-2 chimera recognizes Pwl effector variants on expression in N. benthamiana. 

To explore the limits of the chimeric protein, they generated series of targeted mutations in Pwl2 based on the crystal structure, and performed new assay to test for altered recognition specificities. In many cases, the protein could recognise the effector, showing the robustness of the system. (fig. 3) 

Figure 3: Cell death assays showing recognition of all single Pwl2 point mutants by the chimeric Pikm-1OsHIPP43/Pikp-2 receptor, despite deliberate targeting of mutations at the Pwl2/OsHIPP43 interface.  

The study's findings demonstrate the potential of host target-based NLR engineering in developing new resistance traits that could be less prone to being overcome by pathogen evolution. This research could have far-reaching implications for the future of crop protection and global food supply stability. 

To find out more about the I04 beamline or discuss potential applications, please contact Principal Beamline Scientist Ralf Flaig ralf.flaig@diamond.ac.uk  

ENDS   - 

Paper: “Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector”, July 5, 2024 https://doi.org/10.1073/pnas.2402872121 

Authors and affiliations: Rafal Zdrzalek, Yuxuan Xi, Thorsten Langner, Mark J. Banfield +9  Authors Info & Affiliations 

Further information please contact: mark.banfield@jic.ac.uk  

For further information: please contact Diamond Communications: Lorna Campbell +44 7836 625999 or Isabelle Boscaro-Clarke +44 1235 778130   Diamond Light Source: www.diamond.ac.uk  Twitter: @DiamondLightSou    

 

The John Innes Centre, located in Norwich, Norfolk, England, is an independent centre for research and training in plant and microbial science founded in 1910. It is an international centre of excellence in plant science, genetics and microbiology. Its research aims to address global challenges, and new knowledge of plants and microbes is used to answer fundamental questions, as well as having a significant impact on industrial biotechnology, society and global development. 

The John Innes Centre fosters a creative, curiosity-driven approach to fundamental questions in bio-science, with a view to translating that into societal benefits. Over the last 110 years, we have achieved a range of fundamental breakthroughs, resulting in major societal impacts. The director of the John Innes Centre is Professor Graham Moore FRS. 

Diamond Light Source provides industrial and academic user communities with access to state-of-the-art analytical tools to enable world-changing science. Shaped like a huge ring, it works like a giant microscope, accelerating electrons to near light speeds, to produce a light 10 billion times brighter than the Sun, which is then directed off into 33 laboratories known as ‘beamlines’. In addition to these, Diamond offers access to several integrated laboratories including the world-class Electron Bio-imaging Centre (eBIC) and the Electron Physical Science Imaging Centre (ePSIC).    

Diamond serves as an agent of change, addressing 21st century challenges such as disease, clean energy, food security and more. Since operations started, more than 16,000 researchers from both academia and industry have used Diamond to conduct experiments, with the support of approximately 760 world-class staff. Almost 12,000 scientific articles have been published by our users and scientists.    

Funded by the UK Government through the Science and Technology Facilities Council (STFC), and by the Wellcome Trust, Diamond is one of the most advanced scientific facilities in the world, and its pioneering capabilities are helping to keep the UK at the forefront of scientific research.    

Diamond was set-up as an independent not for profit company through a joint venture, between the UKRI’s Science and Technology Facilities Council and one of the world’s largest biomedical charities, the Wellcome Trust - each respectively owning 86% and 14% of the shareholding.    

  

END


[Attachments] See images for this press release:
A new method for protection from plant pathogens could help support global food security.  A new method for protection from plant pathogens could help support global food security.  2 A new method for protection from plant pathogens could help support global food security.  3

ELSE PRESS RELEASES FROM THIS DATE:

Halogen bonding for selective electrochemical separation, path to sustainable chemical processing demonstrated

2024-08-13
With a new polymer that only attracts certain substances from solutions when electrically activated, researchers have taken a major step towards sustainable chemical separation. A team based at the University of Illinois Urbana-Champaign has reported the first demonstration of selective electrochemical separation driven by halogen bonding in the journal JACS Au. This was achieved by engineering a polymer that modulates the charge density on a halogen atom when electricity is applied. The polymer then attracts only certain targets – such as halides, oxyanions, and even organic molecules – from organic solutions, ...

Study reveals urban trees suffer more from heat waves and drought than their rural counterparts

Study reveals urban trees suffer more from heat waves and drought than their rural counterparts
2024-08-13
NEW YORK, August 13, 2024 — A recently published study in Ecological Applications details how trees in New York City and Boston are more negatively impacted by heat waves and drought than trees of the same species in nearby rural forests. The finding, made by researchers at the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC), highlights the challenges urban trees face in the context of climate change and underscores the importance of tailored urban forestry management as ...

New $7.7 million grant to propel search for medications for brain disorders

New $7.7 million grant to propel search for medications for brain disorders
2024-08-13
JUPITER, Fla. — Children born with a damaged gene needed for healthy brain development, SYNGAP1, experience seizures, sensory processing disorders, difficulty speaking, intellectual disability, and autism-like behaviors. It’s a condition without any treatments, one that’s hard both on parents and children, said Gavin Rumbaugh, Ph.D., a neuroscientist at The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology. Rumbaugh and a team of scientists from the institute have been awarded a five-year grant from the National Institute of Mental Health worth $7.7 million to work toward a treatment. Their goal is to ...

National Cancer Institute awards grant to Hollings researchers focused on depression among cancer survivors

National Cancer Institute awards grant to Hollings researchers focused on depression among cancer survivors
2024-08-13
Depression is common among people with likely incurable cancer – understandably so. But studies have shown that it can be treated, and if the goal is for individuals to be able to engage as much as possible with family, friends, hobbies or whatever gives them joy and purpose in whatever amount of time they have, then treating depression becomes imperative.   That’s not so easy, though, as patients may face a shortage of mental health workers, difficulties with transportation and continuing stigma around mental health issues.   Evan Graboyes, M.D., a head and neck surgical oncologist and director of Survivorship ...

MSK Research Highlights, August 13, 2024

MSK Research Highlights, August 13, 2024
2024-08-13
New research from Memorial Sloan Kettering Cancer Center (MSK) found patients with non-small cell lung cancer brain metastases may benefit from up-front stereotactic radiosurgery; identified a connection between antibiotic use and autoimmune diseases; and uncovered a previously unknown structural role for messenger RNAs in the cytoplasm of cells. Patients with non-small cell lung cancer brain metastases may benefit from upfront stereotactic radiosurgery For patients with non-small cell lung cancer that has spread to the brain, targeted therapies called ...

Study finds that dopaminergic medication improves sleep quality in Parkinson’s disease patients

2024-08-13
A study involving 22 Parkinson’s disease (PD) patients has shown that use of the dopaminergic drug levodopa improves sleep quality. When the patients took the drug, the number of times they woke up during the night fell 25% and the amount of time they remained awake fell 30% on average.  The investigation was conducted with FAPESP’s support by researchers at São Paulo State University (UNESP) in Brazil, and the University of Grenoble Alpes (UGA) in France. An article reporting the results is published in ...

Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy

Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy
2024-08-13
Tailoring light with Nanomaterials Metamaterials, engineered at the nanoscale, exhibit unique properties not found in naturally occurring materials. These properties arise from their nanoscale building blocks, which, until now, have been challenging to observe directly due to their size being smaller than the wavelength of light. The team's research overcomes this limitation by employing a new microscopy technique that can simultaneously reveal both the nano and macro structures of these materials. A New Window into the Nano World The key finding of this research is a methodological breakthrough that enables the visualization of structures previously too small to be seen ...

Tackling cancer from the inside out: A deep dive into immune checkpoint inhibitors

Tackling cancer from the inside out: A deep dive into immune checkpoint inhibitors
2024-08-13
In the past two decades, immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, showing promising results against various solid tumors. This study reviews recent developments in ICIs, focusing on new targets like T cell immunoreceptor with Ig and ITIM domains (TIGIT), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and lymphocyte activation gene-3 (LAG-3). These targets aim to overcome resistance mechanisms limiting the effectiveness of current therapies, such as anti-PD-1 and anti-CTLA-4. By identifying and developing these new ...

RPI Physicist Moussa N’Gom is using light to enhance nuclear security

RPI Physicist Moussa N’Gom is using light to enhance nuclear security
2024-08-13
Our nation’s security depends on the effective detection of nuclear materials at our borders and beyond. To address this challenge, Rensselaer Polytechnic Institute (RPI) physicist Moussa N’Gom, Ph.D., is leading research aimed at developing a quantum sensing probe to detect and characterize special nuclear materials precisely and without contact. Special nuclear materials are only mildly radioactive but can be used in nuclear explosives. The research is being conducted through RPI’s participation in the Consortium ...

The atmosphere in the room can affect strategic decision-making, study finds

2024-08-13
The atmosphere within a group can influence the outcome of strategic decision-making, according to a new study co-authored by Bayes Business School (formerly Cass).  Paula Jarzabkowski, Professor of Strategic Management at Bayes, along with researchers from University of Queensland, Macquarie University and Leuphana University of Lüneburg, found that different atmospheres led to people speaking and interacting in different ways that changed how they made sense of the strategy.   For instance, when the atmosphere was pensive, people were cautious about the way to proceed, whereas, when it was curious they felt ...

LAST 30 PRESS RELEASES:

Cooler heads prevail: New research reveals best way to prevent dogs from overheating

UC Riverside medical school develops new curriculum to address substance use crisis

Food fussiness a largely genetic trait from toddlerhood to adolescence

Celebrating a century of scholarship: Isis examines the HSS at 100

Key biomarkers identified for predicting disability progression in multiple sclerosis

Study: AI could lead to inconsistent outcomes in home surveillance

Study: Networks of Beliefs theory integrates internal & external dynamics

Vegans’ intake of protein and essential amino acids is adequate but ultra-processed products are also needed

Major $21 million Australian philanthropic investment to bring future science into disease diagnosis

Innovating alloy production: A single step from ores to sustainable metals

New combination treatment brings hope to patients with advanced bladder cancer

Grants for $3.5M from TARCC fund new Alzheimer’s disease research at UTHealth Houston

UTIA researchers win grant for automation technology for nursery industry

Can captive tigers be part of the effort to save wild populations?

The Ocean Corporation collaborates with UTHealth Houston on Space Medicine Fellowship program

Mysteries of the bizarre ‘pseudogap’ in quantum physics finally untangled

Study: Proteins in tooth enamel offer window into human wellness

New cancer cachexia treatment boosts weight gain and patient activity

Rensselaer researcher receives $3 million grant to explore gut health

Elam named as a Fellow of the Electrochemical Society

Study reveals gaps in access to long-term contraceptive supplies

Shining a light on the roots of plant “intelligence”

Scientists identify a unique combination of bacterial strains that could treat antibiotic-resistant gut infections

Pushing kidney-stone fragments reduces stones’ recurrence

Sweet success: genomic insights into the wax apple's flavor and fertility

New study charts how Earth’s global temperature has drastically changed over the past 485 million years, driven by carbon dioxide

Scientists say we have enough evidence to agree global action on microplastics

485 million-year temperature record of Earth reveals Phanerozoic climate variability

Atmospheric blocking slows ocean-driven glacier melt in Greenland

Study: Over nearly half a billion years, Earth’s global temperature has changed drastically, driven by carbon dioxide

[Press-News.org] A new method for protection from plant pathogens could help support global food security.