PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A more realistic look at DNA in action

Researchers find that DNA behaves differently when crowded by molecules, as in a cell

2025-05-09
(Press-News.org) Most scientists look at DNA behavior in isolation, without considering how matter within a cell interacts with DNA Researchers observed DNA strand separation preceding replication and repair suppressed by molecules pushing strands together Findings challenge the standard in biochemical practice of heating DNA to separate strands EVANSTON, Ill. --- By creating a more true-to-life representation of DNA’s environment, researchers at Northwestern University have discovered that strand separation — the essential process a “resting” double helix undergoes before it can initiate replication or make repairs — may take more mechanical force than the field previously believed.

Most biochemistry labs that study DNA isolate it within a water-based solution that allows scientists to manipulate DNA without interacting with other molecules. They also tend to use heat to separate strands, heating the DNA to over 150 degrees Fahrenheit, a temperature a cell would never naturally reach. By contrast, in a living cell DNA lives in a very crowded environment, and special proteins attach to DNA to mechanically unwind the double helix and then pry it apart.

“The interior of the cell is super crowded with molecules, and most biochemistry experiments are super uncrowded,” said Northwestern professor John Marko. “You can think of extra molecules as billiard balls. They’re pounding against the DNA double helix and keeping it from opening.”

Marko, a professor of molecular biosciences as well as physics in Northwestern’s Weinberg College of Arts and Sciences, led the research along with Northwestern post-doctoral researcher Parth Desai. In Marko’s lab, for their experiments, he and Desai use microscopic magnetic tweezers to separate DNA and then carefully attach strands of it to surfaces on one end, and tiny magnetic particles on the other, then conduct high-tech imaging. The technology has been around for 25 years, and Marko was one of the first researchers theorizing about and then using it.

Marko and Desai wrote the paper that not only identifies but quantifies the amount of stress imposed by crowding, that will be published on June 17 in the Biophysical Journal.

Desai introduced three types of molecules to the solution holding DNA to mimic proteins and investigated interactions among glycerol, ethylene glycol and polyethylene glycol (each approximately the size of one DNA double helix, two or three nanometers).

“We wanted to have a wide variety of molecules where some cause dehydration, destabilizing DNA mechanically, and then others that stabilize DNA,” Desai said. “It’s not exactly analogous to things found in cells, but you could imagine that other competing proteins in cells will have a similar effect. If they’re competing for water, for instance, they would dehydrate DNA, and if they’re not competing for water, they would crowd the DNA and have this entropic effect.”

While fundamental, research like this has “been the basis for many, many, many medical advances,” Marko said, such as deep sequencing of DNA, where scientists can now sequence an entire human genome in under a day. He also thinks their findings may be broadly applicable to other elements of fundamental biochemical processes.

“If this affects DNA strand separation, all protein interactions with DNA are also going to be affected,” Marko said. “For example, the tendency for proteins to stick to specific sites on DNA and to control specific processes — this is also going to be altered by crowding.”

In addition to running more experiments that incorporate multiple crowding agents, the team hopes to move closer to a true representation of a cell, and from there, study how interactions between enzymes and DNA are impacted by crowding.

This work was supported by the National Institutes of Health (grant R01-GM105847) and by subcontract to the University of Massachusetts Center for 3D Structure and Physics of the Genome (under NIH grant UM1-HG011536).

END


ELSE PRESS RELEASES FROM THIS DATE:

Skia: Shedding light on shadow branches

2025-05-09
What happens when trailblazing engineers and industry professionals team up? The answer may transform the future of computing efficiency for modern data centers. Data centers house and use large computers to run massive amounts of data. Oftentimes, the processors can’t keep up with this workload because it’s taxing to predict and prepare instructions to carry out. This slows the flow of data. Thus, when you type a question into a search engine, the answer generates more slowly or doesn’t provide the information you need. To remedy this issue, researchers at Texas ...

Fat-rich fluid fuels immune failure in ovarian cancer

2025-05-09
New research led by Irish scientists has uncovered how lipid-rich fluid in the abdomen, known as ascites, plays a central role in weakening the body’s immune response in advanced ovarian cancer. The findings offer new insights into immune suppression in ovarian cancer and open promising avenues for future immunotherapy approaches. Over 70% of patients with ovarian cancer are diagnosed at an advanced stage, often presenting with large volumes of ascites. This ascites fluid not only supports the spread of cancer throughout the abdominal cavity but also ...

The origins of language

2025-05-09
To the point Chimpanzees are capable of complex communication: The human capacity for language may not be as unique as previously thought. Chimpanzees have a complex communication system that allows them to combine calls to create new meanings, similar to human language. Combining calls creatively: Chimpanzees use four ways to change meaning when combining single calls into two-call combinations, including compositional and non-compositional combinations, and they use a large variety of call combinations in a wide range of contexts. Origins of language: The discovery of a complex communication system in chimpanzees has important ...

SNU-Harvard researchers jointly build next-gen swarm robots using simple linked particles

2025-05-09
Seoul National University College of Engineering announced that a joint research team from Seoul National University and Harvard University has developed a next-generation swarm robot system inspired by nature—capable of movement, exploration, transport, and cooperation, all without the need for precise sensors or centralized control.   The study was led by Professor Ho-Young Kim, Dr. Kyungmin Son, and master’s student Kwanwoo Kim at SNU’s Department of Mechanical Engineering, and Professor L. Mahadevan and Dr. Kimberly Bowal at Harvard. Their approach connects simple, active ...

First fossil evidence of endangered tropical tree discovered

2025-05-09
UNIVERSITY PARK, Pa. — For the first time, scientists have discovered fossil evidence of an endangered, living tropical tree species. The unprecedented find was made in Brunei, a country on the large island of Borneo, and reveals a critical piece of the ancient history of Asia’s rainforests, highlighting the urgent need for conservation in the region, according to researchers at Penn State who led the discovery.   The research team published their findings in the American Journal of Botany.  The fossils, at least two million years old, represent the first direct ...

New gene linked to severe cases of Fanconi anemia

2025-05-09
Fanconi anemia is an aggressive, life-threatening disorder. Most individuals living with this rare genetic condition, characterized by bone marrow failure and cancer predisposition, survive into adulthood only with bone marrow transplantation and regular cancer screening. But a new study demonstrates that mutations in one particular gene in the Fanconi anemia pathway result in an even more severe form of the disorder—and that many fetuses with this mutation do not survive to birth. The sobering findings, published in the Journal of Clinical Investigation, ...

METTL3 drives oral cancer by blocking tumor-suppressing gene

2025-05-09
“[…] we report that METTL3, an oncogene regulates the expression of SMAD4, a tumor-suppressor via miR-146a-5p, thus unveiling a novel regulatory axis of METTL3/miR-146a-5p/SMAD4 in OSCC, which can potentially have therapeutic implications.” BUFFALO, NY – May 9, 2025 – A new research paper was published in Oncotarget, Volume 16, on May 8, 2025, titled “METTL3 promotes oral squamous cell carcinoma by regulating miR-146a-5p/SMAD4 axis.” In this study, researchers Jayasree Peroth Jayaprakash, Pragati Karemore, and Piyush Khandelia from the Birla Institute of Technology and ...

Switch to two-point rating scales to reduce racism in performance reviews, research suggests

2025-05-09
 Toronto - The plumber has just left after fixing that leaky basement pipe. Ping – a phone alert asks you to rate their service. Hmm -- if it wasn’t an outright terrible job, do you give them three, four or five stars? New research from the University of Toronto’s Rotman School of Management shows that a multi-point system like that is prone to subtle, often unconscious, racial bias -- yet with significant financial consequences for non-white workers. Using data from a real-life online home maintenance matching service, researchers showed white workers ...

The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: May 9, 2025

2025-05-09
Reston, VA (May 9, 2025)—New research has been published ahead-of-print by The Journal of Nuclear Medicine (JNM). JNM is published by the Society of Nuclear Medicine and Molecular Imaging, an international scientific and medical organization dedicated to advancing nuclear medicine, molecular imaging, and theranostics—precision medicine that allows diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes. Summaries of the newly published research articles are provided below. New Brain Imaging Tool Targets Key Enzyme in Mental Health Scientists have developed a promising new PET imaging compound, 11C-ZTP-1, to visualize ...

Stability solution brings unique form of carbon closer to practical application

2025-05-09
UNIVERSITY PARK, Pa. — Carbyne, a one-dimensional chain of carbon atoms, is incredibly strong for being so thin, making it an intriguing possibility for use in next-generation electronics, but its extreme instability causing it to bend and snap on itself made it nearly impossible to produce at all, let alone produce enough of it for advanced studies. Now, an international team of researchers, including from Penn State, may have a solution.   The research team has enclosed carbyne in single-walled carbon nanotubes — tiny, tube-shaped ...

LAST 30 PRESS RELEASES:

JULAC and Taylor & Francis sign open access agreement to boost the impact of Hong Kong research

Protecting older male athletes’ heart health 

KAIST proposes AI-driven strategy to solve long-standing mystery of gene function

Eye for trouble: Automated counting for chromosome issues under the microscope

The vast majority of US rivers lack any protections from human activities, new research finds

Ultrasound-responsive in situ antigen "nanocatchers" open a new paradigm for personalized tumor immunotherapy

Environmental “superbugs” in our rivers and soils: new one health review warns of growing antimicrobial resistance crisis

Triple threat in greenhouse farming: how heavy metals, microplastics, and antibiotic resistance genes unite to challenge sustainable food production

Earthworms turn manure into a powerful tool against antibiotic resistance

AI turns water into an early warning network for hidden biological pollutants

Hidden hotspots on “green” plastics: biodegradable and conventional plastics shape very different antibiotic resistance risks in river microbiomes

Engineered biochar enzyme system clears toxic phenolic acids and restores pepper seed germination in continuous cropping soils

Retail therapy fail? Online shopping linked to stress, says study

How well-meaning allies can increase stress for marginalized people

Commercially viable biomanufacturing: designer yeast turns sugar into lucrative chemical 3-HP

Control valve discovered in gut’s plumbing system

George Mason University leads phase 2 clinical trial for pill to help maintain weight loss after GLP-1s

Hop to it: research from Shedd Aquarium tracks conch movement to set new conservation guidance

Weight loss drugs and bariatric surgery improve the body’s fat ‘balance:’ study

The Age of Fishes began with mass death

TB harnesses part of immune defense system to cause infection

Important new source of oxidation in the atmosphere found

A tug-of-war explains a decades-old question about how bacteria swim

Strengthened immune defense against cancer

Engineering the development of the pancreas

The Journal of Nuclear Medicine ahead-of-print tip sheet: Jan. 9, 2026

Mount Sinai researchers help create largest immune cell atlas of bone marrow in multiple myeloma patients

Why it is so hard to get started on an unpleasant task: Scientists identify a “motivation brake”

Body composition changes after bariatric surgery or treatment with GLP-1 receptor agonists

Targeted regulation of abortion providers laws and pregnancies conceived through fertility treatment

[Press-News.org] A more realistic look at DNA in action
Researchers find that DNA behaves differently when crowded by molecules, as in a cell