The “Great Unified Microscope” can see both micro and nanoscale structures
Researchers unify two conventional techniques that so far have been used to make either micro- or nanoscale observations
2025-11-14
(Press-News.org)
Researchers Kohki Horie, Keiichiro Toda, Takuma Nakamura, and Takuro Ideguchi of the University of Tokyo have built a microscope that can detect a signal over an intensity range fourteen times wider than conventional microscopes. Moreover, the observations are made label-free, that is, without the use of additional dyes. This means the method is gentle on cells and adequate for long-term observations, holding potential for testing and quality control applications in the pharmaceutical and biotechnology industries. The findings are published in the journal Nature Communications.
Microscopes have played a pivotal role in the development of science since the 16th century. However, progress has required not only more sensitive and accurate equipment and analysis, but also more specialized ones. Therefore, modern, cutting-edge techniques have had to straddle tradeoffs. Quantitative phase microscopy (QPM) leverages forward-scattered light and can detect structures at the microscale (in this study, over 100 nanometers), but not smaller. Consequently, this technique has been primarily used to take static pictures of relatively complex cell structures. Interferometric scattering (iSCAT) microscopy, on the other hand, exploits back-scattered light and can detect structures as small as single proteins. As such, it can be used to “track” single particles, allowing insight into dynamical changes within the cell, but it cannot provide the comprehensive view that QPM can.
“I would like to understand dynamic processes inside living cells using non-invasive methods,” says Horie, one of the first authors.
Thus, the research team set out to investigate whether measuring both directions of light simultaneously could overcome the tradeoff and reveal a wide range of sizes and motions from the same image. To test the idea and confirm their newly built microscope was working as hoped, the researchers set out to observe what happened during cell death. They recorded one image encoding information from both forward and backward-traveling light.
“Our biggest challenge,” Toda, another first author, explains, “was cleanly separating two kinds of signals from a single image while keeping noise low and avoiding mixing between them.”
As a result, they were able to quantify not only the motion of cell structures (micro) but also of tiny particles (nano). Additionally, by comparing the forward and back-scattered light, they could also estimate each particle’s size and refractive index, a property describing how much light bends or scatters when passing through particles.
“We plan to study even smaller particles,” Toda says, already thinking about future research, “such as exosomes and viruses, and to estimate their size and refractive index in different samples. We also want to reveal how living cells move toward death by controlling their state and double-checking our results with other techniques.”
END
ELSE PRESS RELEASES FROM THIS DATE:
2025-11-14
ANN ARBOR—For a long time, evolutionary biologists have thought that the genetic mutations that drive the evolution of genes and proteins are largely neutral: they're neither good nor bad, but just ordinary enough to slip through the notice of selection.
Now, a University of Michigan study has flipped that theory on its head.
In the process of evolution, mutations occur which can then become fixed, meaning that every individual in the population carries that mutation. A longstanding theory, called the Neutral Theory of Molecular Evolution, posits that most genetic mutations that are fixed are neutral. Bad mutations ...
2025-11-14
Tensor operations are the kind of arithmetic that form the backbone of nearly all modern technologies, especially artificial intelligence, yet they extend beyond the simple maths we’re familiar with. Imagine the mathematics behind rotating, slicing, or rearranging a Rubik’s cube along multiple dimensions. While humans and classical computers must perform these operations step by step, light can do them all at once.
Today, every task in AI, from image recognition to natural language processing, relies on tensor operations. However, the explosion of ...
2025-11-14
Mangrove ecosystems rank among the most efficient "blue carbon" systems on Earth, capable of absorbing and storing vast quantities of atmospheric carbon dioxide (CO2). However, mangroves also release methane (CH4), a potent greenhouse gas, potentially offsetting a portion of their climate mitigation benefits. While prior research has focused primarily on methane emissions from mangrove soils and water surfaces, the role of tree stems as an emission pathway and its significance for global blue carbon accounting have remained largely unexamined.
In a new study, researchers from the South China Botanical Garden of the Chinese Academy of Sciences conducted a global-scale ...
2025-11-14
Food brings people together. It serves as a tool to communicate political stances, to cultivate cross-cultural comprehension or, if necessary, create tensions. Menus can reflect these intentions by using food to create specific psychological effects and convey symbolic messages. But how exactly is it done?
Now, researchers in Portugal have examined menus from diplomatic dinners, state banquets, and receptions hosted over the 20th and 21st centuries to find out how meals reflected and shaped Portuguese foreign policy and ...
2025-11-14
A research team from South China University of Technology has made progress in understanding both the unconditional global existence and the vanishing viscosity limit of parabolic-elliptic coupled systems, with findings that extend existing research. The work, led by Prof. Changjiang Zhu and Dr. Qiaolong Zhu, is published in Acta Mathematica Scientia.
The study focuses on a parabolic-elliptic coupled system, which is a simplified model critical to understanding phenomena where fluid motion interacts with heat radiation. ...
2025-11-14
As global water, energy and food demands intensify under climate change, a scalable, round-the-clock technology that simultaneously produces fresh water, electricity and irrigation water is urgently needed. Now researchers from Harbin Institute of Technology, Wuhan University and Tsinghua University—led by Prof. Shih-Hsin Ho—have unveiled an integrated Water/Electricity-Cogeneration–Cultivation (WEC) platform that couples solar-driven desalination with salinity-gradient power generation and zero-pollution crop irrigation. The work offers a practical blueprint for advancing ...
2025-11-14
As data theft and counterfeiting grow ever more sophisticated, cryptography demands devices that are miniature, reconfigurable and almost impossible to reverse-engineer. Now researchers from the Shenyang Institute of Automation (CAS), Shanghai University and City University of Hong Kong—led by Prof. Haibo Yu and Prof. Wen Jung Li—have created a micro-dynamic multiple encryption device (μ-DMED) built from coumarin-based metamaterials that can hide, rewrite and store multilevel information under different light fields. The work establishes a new paradigm for on-chip, high-security optical encryption.
Why μ-DMED Matters
All-Optical ...
2025-11-14
Professor Wen-Bo Liu's research group at Wuhan University reported a nickel-catalyzed regioselective hydrogen metallization/5-exo-trig cyclization reaction. Using β-propargylcyclobutanone as a starting material, multi-substituted bicyclo[2.1.1]hexanol can be synthesized in one step, followed by skeletal rearrangement to yield 1,2,4-trisubstituted bicyclo[2.1.1]hexanone. This structure can be used for diverse derivatization reactions. DFT computational studies elucidated the crucial role of carbonyl coordination in regioselectivity control. This research provides a new method for obtaining structurally ...
2025-11-14
LA JOLLA, CA—When labor begins, the uterus must coordinate rhythmic, well-timed contractions to deliver the baby safely. While hormones such as progesterone and oxytocin are key contributors to that process, scientists have long suspected that physical forces—in this case, the stretching and pressure that accompany pregnancy and delivery—also play a role.
Now, a new study from Scripps Research published in Science on November 13, 2025, reveals how the uterus senses and responds to those forces at a molecular level. The findings could help scientists better understand the biological roots of conditions such as stalled labor and preterm birth, guiding ...
2025-11-14
This study is led by Professor Wanneng Yang (National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China). The team created the Arabidopsis Phenotypic Trait Estimation System (APTES), an open-access pipeline integrating computer vision with optimized deep learning models to automate organ phenotyping.
For individual leaf segmentation, an enhanced Cascade Mask R-CNN model achieved precision, recall, and F1 scores of 0.965, 0.958, and 0.961 respectively, representing consistent ~1% improvements ...
LAST 30 PRESS RELEASES:
[Press-News.org] The “Great Unified Microscope” can see both micro and nanoscale structures
Researchers unify two conventional techniques that so far have been used to make either micro- or nanoscale observations