(Press-News.org) SANTA CRUZ, CA--A remarkable planetary system discovered by NASA's Kepler mission has six planets around a Sun-like star, including five small planets in tightly packed orbits. Astronomers at the University of California, Santa Cruz, and their coauthors analyzed the orbital dynamics of the system, determined the sizes and masses of the planets, and figured out their likely compositions--all based on Kepler's measurements of the changing brightness of the host star (called Kepler-11) as the planets passed in front of it.
"Not only is this an amazing planetary system, it also validates a powerful new method to measure the masses of planets," said Daniel Fabrycky, a Hubble postdoctoral fellow at UC Santa Cruz, who led the orbital dynamics analysis. Fabrycky and Jack Lissauer, a scientist at NASA Ames Research Center in Mountain View, are the lead authors of a paper on Kepler-11 published in the February 3 issue of Nature.
The five inner planets in the Kepler-11 system range in size from 2.3 to 13.5 times the mass of the Earth. Their orbital periods are all less than 50 days, so they orbit within a region that would fit inside the orbit of Mercury in our solar system. The sixth planet is larger and farther out, with an orbital period of 118 days and an undetermined mass.
"Of the six planets, the most massive are potentially like Neptune and Uranus, but the three lowest mass planets are unlike anything we have in our solar system," said Jonathan Fortney, assistant professor of astronomy and astrophysics at UCSC, who led the work on understanding the structure and composition of the planets, along with UCSC graduate students Eric Lopez and Neil Miller.
The Kepler space telescope detects planets that "transit" or pass in front of their host star, causing periodic dips in the brightness of the star as measured by the telescope's sensitive photometer. The amount of the brightness reduction tells scientists how big the planet is in terms of its radius. The time between transits tells them its orbital period. To determine the planets' masses, Fabrycky analyzed slight variations in the orbital periods caused by gravitational interactions among the planets.
"The timing of the transits is not perfectly periodic, and that is the signature of the planets gravitationally interacting," he said. "By developing a model of the orbital dynamics, we worked out the masses of the planets and verified that the system can be stable on long time scales of millions of years."
Previously, detections of transiting planets have been followed up with observations from powerful ground-based telescopes to confirm the planet and determine its mass using Doppler spectroscopy, which measures the "wobble" in the motion of the star caused by the gravitational tug of the planet. With Kepler-11, however, the planets are too small and the star (2,000 light-years away) is too faint for Doppler spectroscopy to work. This is likely to be the case with many of the planets detected by the Kepler mission, the main goal of which is to find small, Earth-size planets in the habitable zones of their stars.
"We will need to use orbital dynamics a lot with the Kepler mission to measure the masses of planets, so we expect to be doing a lot of those analyses," Fabrycky said.
More than 100 transiting planets have been observed by Kepler and other telescopes, but the vast majority of them are Jupiter-like gas giants, and almost all of them are in single-planet systems. The Kepler-11 system is remarkable in terms of the number of planets, their small sizes, and their closely packed orbits. Before this, astronomers had determined both size and mass for only three exoplanets smaller than Neptune. Now, a single planetary system has added five more. The sixth planet in Kepler-11 is separated enough from the others that the orbital perturbation method can't be used to determine its mass, Fabrycky said.
As is the case in our solar system, all of the Kepler-11 planets orbit in more or less the same plane. This finding reinforces the idea that planets form in flattened disks of gas and dust spinning around a star, and the disk pattern is conserved after the planets have formed, Fabrycky said. "The coplanar orbits in our solar system inspired this theory in the first place, and now we have another good example. But that and the Sun-like star are the only parts of Kepler-11 that are like the solar system," he said.
The densities of the planets (derived from mass and radius) provide clues to their compositions. All six planets have densities lower than Earth's. "It looks like the inner two could be mostly water, with possibly a thin skin of hydrogen-helium gas on top, like mini-Neptunes," Fortney said. "The ones farther out have densities less than water, which seems to indicate significant hydrogen-helium atmospheres."
That's surprising, because a small, hot planet should have a hard time holding onto a lightweight atmosphere. "These planets are pretty hot because of their close orbits, and the hotter it is the more gravity you need to keep the atmosphere," Fortney said. "My students and I are still working on this, but our thoughts are that all these planets probably started with more massive hydrogen-helium atmospheres, and we see the remnants of those atmospheres on the ones farther out. The ones closer in have probably lost most of it."
One reason a six-planet system is so exciting is that it allows scientists to make these kinds of comparisons among planets within the same system. "That's really powerful, because we can work out what's happened to this system as a whole," Fortney said. "Comparative planetary science is how we've come to understand our solar system, so this is much better than just finding more solitary hot Jupiters around other stars."
For example, the presence of small planets with hydrogen-helium atmospheres suggests that this system formed relatively quickly, he said. Studies indicate that stellar disks lose their hydrogen and helium gas within about 5 million years. "So it tells us how quickly planets can form," Fortney said.
The inner planets are so close together that it seems unlikely they formed where they are now, he added. "At least some must have formed farther out and migrated inward. If a planet is embedded in a disk of gas, the drag on it leads to the planet spiralling inward over time. So formation and migration had to happen early on."
###
The Nature paper's 39 coauthors include scientists at 16 institutions. This research was funded by NASA.
END
Boston, MA – Advances in DNA sequencing technology have revolutionized biomedical research and taken us another step forward in personalized medicine. Now, scientists led by Brigham and Women's Hospital (BWH), Harvard Medical School (HMS), the Broad Institute, the Wellcome Trust Sanger Institute (WTSI), the University of Washington, and the European Molecular Biology Laboratory, have developed a new framework for analyzing key genetic variations that previously were overlooked. The research will be published in the February 3 issue of the prestigious journal Nature.
Identifying ...
A detailed analysis of data from 185 human genomes sequenced in the course of the 1000 Genomes Project, by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, in collaboration with researchers at the Wellcome Trust Sanger Institute in Cambridge, UK, as well as the University of Washington and Harvard Medical School, both in the USA, has identified the genetic sequence of an unprecedented 28 000 structural variants (SVs) – large portions of the human genome which differ from one person to another. The work, published today in Nature, could ...
NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fourth in the competition.
This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face ...
ROCHESTER, Minn. -- For several decades, researchers have been linking genetic mutations to diseases ranging from cancer to developmental abnormalities. What hasn't been clear, however, is how the body's genome sustains such destructive glitches in the first place. Now a team of Mayo Clinic scientists and collaborators provide an unprecedented glimpse of a little-understood gene, called MMSET, revealing how it enables disease-causing mutations to occur. The findings appear in the current issue of Nature.
"MMSET had been known for many years, and had been shown to be mutated ...
Are we on the verge of being able to stimulate the brain to see the world anew - an electric thinking cap? Research by Richard Chi and Allan Snyder from the Centre for the Mind at the University of Sydney suggests that this could be the case.
They found that participants who received electrical stimulation of the anterior temporal lobes were three times as likely to reach the fresh insight necessary to solve a difficult, unfamiliar problem than those in the control group. The study published on February 2 in the open-access journal PLoS ONE.
According to the authors, ...
New research from the Twins Early Development Study at King's College London Institute of Psychiatry (IoP), published in PLoS ONE on February 2nd, shows that measures used to judge the effectiveness of schools are partly influenced by genetic factors in students.
The study, funded by the Medical Research Council (MRC), was conducted by scientists in the UK at the MRC Social, Genetic and Developmental Psychiatry Centre, King's IoP, and in the US at the University of New Mexico.
The assumption behind measures of school effectiveness is that changes in student performance ...
Chestnut Hill, Mass. (2/3/2011) – Analyzing billions of pieces of genetic data collected from people around the world, Boston College biologist Gabor Marth and his research team are playing an integral role in the global effort to sequence 1000 genomes and move closer to understanding in fine detail how genetics influence human health and development.
The most comprehensive map to date of genomic structural variants – the layer of our DNA that begins to distinguish us from one another – has been assembled by analyzing 185 human genomes, Marth and co-authors from the 1000 ...
BOSTON—Prostate tumors that carry a "signature" of four molecular markers have the potential to become dangerously metastatic if not treated aggressively, researchers at Dana-Farber Cancer Institute report in a study published online today by the journal Nature. The discovery lays the groundwork for the first gene-based test for determining whether a man's prostate cancer is likely to remain dormant within the prostate gland, or spread lethally to other parts of the body.
By analyzing prostate cancer tissue from hundreds of men participating in a national health study, ...
In a major advance for schizophrenia research, an international team of scientists, led by Jonathan Sebat, PhD, assistant professor of psychiatry and cellular and molecular medicine at the University of California, San Diego School of Medicine, has identified a gene mutation strongly linked to the brain disorder – and a signaling pathway that may be treatable with existing compounds.
The work poses significant and immediate implications for neurobiology and the treatment of schizophrenia because the gene identified by the researchers is an especially attractive target ...
LA JOLLA, CA—Reprogramming adult cells to recapture their youthful "can-do-it-all" attitude appears to leave an indelible mark, found researchers at the Salk Institute for Biological Studies. When the team, led by Joseph Ecker, PhD., a professor in the Genomic Analysis Laboratory, scoured the epigenomes of so-called induced pluripotent stem cells base by base, they found a consistent pattern of reprogramming errors.
What's more, these incompletely or inadequately reprogrammed hotspots are maintained when iPS cells are differentiated into a more specialized cell type, ...