(Press-News.org) LA JOLLA, Calif., May 5, 2011 – Early in embryonic development, the neural crest – a transient group of stem cells – gives rise to parts of the nervous system and several other tissues. But little is known about what determines which cells become neurons and which become other cell types. A team led by Dr. Alexey Terskikh at Sanford-Burnham Medical Research Institute (Sanford-Burnham) recently found that expression of a gene called SOX2 maintains the potential for neural crest stem cells to become neurons in the peripheral nervous system, where they interface with muscles and other organs. Their results, published online May 5 by the journal Cell Stem Cell, could help better inform therapies aimed at neurocristopathies, diseases caused by defects in the neural crest or neurons, which include microphthamia and CHARGE syndrome.
The SOX2 gene encodes a transcription factor, a type of protein that switches other genes on or off. SOX2 is one of two key genes researchers use to generate induced pluripotent stem cells (iPSCs), which are capable of differentiating into all cell types for research and potential therapeutic applications.
"In this study, we looked at SOX2's role in cells of the peripheral nervous system and discovered that it's required to sustain multipotency – the ability to differentiate into several cell types in the peripheral nervous system, including neurons and glia," explained Dr. Terskikh, assistant professor in Sanford-Burnham's Del E. Webb Neuroscience, Aging and Stem Cell Research Center.
Using an embryonic stem cell model, Dr. Terskikh and colleagues showed that stem cells in the developing nervous system start out with SOX2, but lose it at the stage when they are considered migratory neural crest cells. Later, as neural crest stem cells aggregate at a subsequent point in development, SOX2 is regained only by those cells fated to become neurons. Neural crest stem cells that remain SOX2-free differentiate into other cell types, but never become neurons.
To determine how SOX2 controls this stage in nervous system development, the researchers looked at the genes it acts upon. They found that SOX2 switches on neurogenin-1 and Mash-1, two genes that support neuronal survival in both the central and peripheral nervous systems.
"If we prevent neural crest stem cells from re-expressing SOX2, we don't get neurons. If we try to push these SOX2-deficient cells to become neurons, they die, but they can readily give rise to glia or smooth muscle cells," Dr. Terskikh said. "We think that one function of SOX2 is to keep cells multipotent or pluripotent for one reason – if they need to become a neuron later in development. We hope this finding will be useful to researchers studying neural crest development and stem cell differentiation."
###
Dr. Terskikh is supported by the California Institute for Regenerative Medicine (CIRM). Co-authors of this study include Flavio Cimadamore, Elena Giusto, Ksenia Gnedeva, Giulio Cattarossi, Amber Miller and Laurence M. Brill at Sanford-Burnham, Katherine Fishwick and Marianne Bronner-Fraser at the California Institute of Technology and Stefano Pluchino from the Institute of Experimental Neurology, IRCCS, in Italy.
For more information about Sanford-Burnham research, visit our blog at http://beaker.sanfordburnham.org.
Original paper
Cimadamore F, Fishwick K, Giusto, Gnedeva K, Cattarossi G, Miller A, Pluchino S, Brill LM, Bronner-Fraser M, Terskikh AV. Human ESC-Derived Neural Crest Model Reveals A Key Role For SOX2 In Sensory Neurogenesis. Cell Stem Cell. May 5, 2011.
About Sanford-Burnham Medical Research Institute
Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top independent research institutions nationally for NIH grant funding and among the top organizations worldwide for its research impact. From 1999 – 2009, Sanford-Burnham ranked #1 worldwide among all types of organizations in the fields of biology and biochemistry for the impact of its research publications, defined by citations per publication, according to the Institute for Scientific Information. According to government statistics, Sanford-Burnham ranks #2 nationally among all organizations in capital efficiency of generating patents, defined by the number of patents issued per grant dollars awarded.
Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a nonprofit public benefit corporation. For more information, please visit www.sanfordburnham.org.
END
As a rule all mammals have the same number of vertebrae in their necks regardless of whether they are a giraffe, a mouse, or a human. But both sloths and manatees are exceptions to this rule having abnormal numbers of cervical vertebrae. New research published in BioMed Central's open access journal EvoDevo shows how such different species have evolved their unusual necks.
Birds, reptiles and amphibians have varying number of vertebrae in their necks, swans have 22-25, but mammals, regardless of size of animal or the animal's neck, only have seven. Aberrant neck vertebrae ...
Exposure to even moderate levels of arsenic in drinking water is associated with an increased risk of heart disease, especially among smokers, finds a study published on bmj.com today.
Arsenic is a natural element of the Earth's crust and high concentrations in groundwater pose a public health threat to millions of people worldwide.
High levels of arsenic exposure from drinking water have already been related to an elevated risk of heart disease. Given the huge burden of heart disease worldwide, a small increased risk associated with moderate arsenic exposure could ...
Energy Digital and TradeFair Group announce their partnership for LDC Gas Forums - Mid Continent, which is taking place September 12th to the 14th . The LDC Gas Forums, comprised of 5 regional conferences held annually in Atlanta, Boston, Chicago, Los Angeles and Canada (in conjunction with IGUA), are the premier events where the Natural Gas Industry meets. The conferences are highly regarded by the industry for their excellent content and as the premier networking event for bringing together buyers and sellers in the natural gas marketplace. This conference will be taking ...
Cold Spring Harbor, N.Y. – A new study from Cold Spring Harbor Laboratory (CSHL) offers an explanation for why our brains produce fewer and fewer neurons with age, a phenomenon thought to underlie age-related cognitive decline. The study, published as the cover story in the May 6 issue of Cell Stem Cell, suggests that this drop in production is due to the shrinking cache of adult stem cells in our brains.
"It's only recently that scientists have found hard evidence for the importance of new neuron production in the adult brain's hippocampus, a region critical for memory ...
Basic scientific curiosity paid off in unexpected ways when Rice University researchers investigating the fundamental physics of nanomaterials discovered a new technology that could dramatically improve solar energy panels.
The research is described in a new paper this week in the journal Science.
"We're merging the optics of nanoscale antennas with the electronics of semiconductors," said lead researcher Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering. "There's no practical way to directly detect infrared light with silicon, but ...
Global warming is likely already taking a toll on world wheat and corn production, according to a new study led by Stanford University researchers. But the United States, Canada and northern Mexico have largely escaped the trend.
"It appears as if farmers in North America got a pass on the first round of global warming," said David Lobell, an assistant professor of environmental Earth system science at Stanford University. "That was surprising, given how fast we see weather has been changing in agricultural areas around the world as a whole."
Lobell and his colleagues ...
A new study identifies the mutation that underlies a rare, inherited accelerated-aging disease and provides key insight into normal human aging. The research, published by Cell Press online May 5 in the American Journal of Human Genetics, highlights the importance of a cellular structure called the "nuclear envelope" in the process of aging.
"Aging is a very complex process which affects most biological functions of an organism but whose molecular basis remains largely unknown," explains Dr. Carlos López-Otín from the University of Oviedo in Spain. "Over the last few ...
Fantazzle, a fantasy sports games website and an exciting new sports entertainment website, Mojingo , jointly announce the formation of a strategic partnership. The partnership is designed to help bring two great game concepts to sports fans. Both companies are excited to offer their users even more fun ways to win free cash prizes every day, week and year.
"We are happy to have had this opportunity present itself and be able to work with the guys over at Mojingo. We have similar beliefs and will continue to provide interesting and unique games for our users to ...
TORONTO, ON – Scientists at the University of Toronto, Stanford and Columbia Universities have developed a way to measure the action and function of candidate prescription drugs on human cells, including the response of individual cells, more quickly and on a larger scale than ever before.
The researchers say their "mass cytometry" technology has the potential to transform the understanding of a variety of diseases and biologic actions, and will provide a better tool to understand how a healthy cell becomes diseased. Clarifying the underlying biochemistry of cells may ...
DALLAS, May 5, 2011 – A UT Southwestern Medical Center researcher has identified the most comprehensive measurement to date of estrogen's effect on breast cancer cells, showing for the first time how immediate and extensive the effect is.
The findings, published online today and in the May 13 print edition of the journal Cell, could lead to a new set of therapeutic applications and provide a model for understanding rapid signal-dependent transcription in other biological systems.
"We found that estrogen signaling immediately and directly regulates a strikingly large ...