PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

What keeps the Earth cooking?

Berkeley Lab scientists join their KamLAND colleagues to measure the radioactive sources of Earth's heat flow

What keeps the Earth cooking?
2011-07-19
(Press-News.org) What spreads the sea floors and moves the continents? What melts iron in the outer core and enables the Earth's magnetic field? Heat. Geologists have used temperature measurements from more than 20,000 boreholes around the world to estimate that some 44 terawatts (44 trillion watts) of heat continually flow from Earth's interior into space. Where does it come from?

Radioactive decay of uranium, thorium, and potassium in Earth's crust and mantle is a principal source, and in 2005 scientists in the KamLAND collaboration, based in Japan, first showed that there was a way to measure the contribution directly. The trick was to catch what KamLAND dubbed geoneutrinos – more precisely, geo-antineutrinos – emitted when radioactive isotopes decay. (KamLAND stands for Kamioka Liquid-scintillator Antineutrino Detector.)

"As a detector of geoneutrinos, KamLAND has distinct advantages," says Stuart Freedman of the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), which is a major contributor to KamLAND. Freedman, a member of Berkeley Lab's Nuclear Science Division and a professor in the Department of Physics at the University of California at Berkeley, leads U.S. participation. "KamLAND was specifically designed to study antineutrinos. We are able to discriminate them from background noise and detect them with very high sensitivity."

KamLAND scientists have now published new figures for heat energy from radioactive decay in the journal Nature Geoscience. Based on the improved sensitivity of the KamLAND detector, plus several years' worth of additional data, the new estimate is not merely "consistent" with the predictions of accepted geophysical models but is precise enough to aid in refining those models.

One thing that's at least 97-percent certain is that radioactive decay supplies only about half the Earth's heat. Other sources – primordial heat left over from the planet's formation, and possibly others as well – must account for the rest.

Hunting for neutrinos from deep in the Earth

Antineutrinos are produced not only in the decay of uranium, thorium, and potassium isotopes but in a variety of others, including fission products in nuclear power reactors. In fact, reactor-produced antineutrinos were the first neutrinos to be directly detected (neutrinos and antineutrinos are distinguished from each other by the interactions in which they appear).

Because neutrinos interact only by way of the weak force – and gravity, insignificant except on the scale of the cosmos – they stream through the Earth as if it were transparent. This makes them hard to spot, but on the very rare occasions when an antineutrino collides with a proton inside the KamLAND detector – a sphere filled with a thousand metric tons of scintillating mineral oil – it produces an unmistakable double signal.

The first signal comes when the antineutrino converts the proton to a neutron plus a positron (an anti-electron), which quickly annihilates when it hits an ordinary electron – a process called inverse beta decay. The faint flash of light from the ionizing positron and the annihilation process is picked up by the more than 1,800 photomultiplier tubes within the KamLAND vessel. A couple of hundred millionths of a second later the neutron from the decay is captured by a proton in the hydrogen-rich fluid and emits a gamma ray, the second signal. This "delayed coincidence" allows antineutrino interactions to be distinguished from background events such as hits from cosmic rays penetrating the kilometer of rock that overlies the detector.

Says Freedman, "It's like looking for a spy in a crowd of people on the street. You can't pick out one spy, but if there's a second spy following the first one around, the signal is still small but it's easy to spot."

KamLAND was originally designed to detect antineutrinos from more than 50 reactors in Japan, some close and some far away, in order to study the phenomenon of neutrino oscillation. Reactors produce electron neutrinos, but as they travel they oscillate into muon neutrinos and tau neutrinos; the three "flavors" are associated with the electron and its heavier cousins.

Being surrounded by nuclear reactors means KamLAND's background events from reactor antineutrinos must also be accounted for in identifying geoneutrino events. This is done by identifying the nuclear-plant antineutrinos by their characteristic energies and other factors, such as their varying rates of production versus the steady arrival of geoneutrinos. Reactor antineutrinos are calculated and subtracted from the total. What's left are the geoneutrinos.

Tracking the heat

All models of the inner Earth depend on indirect evidence. Leading models of the kind known as bulk silicate Earth (BSE) assume that the mantle and crust contain only lithophiles ("rock-loving" elements) and the core contains only siderophiles (elements that "like to be with iron"). Thus all the heat from radioactive decay comes from the crust and mantle – about eight terawatts from uranium 238 (238U), another eight terawatts from thorium 232 (232Th), and four terawatts from potassium 40 (40K).

KamLAND's double-coincidence detection method is insensitive to the low-energy part of the geoneutrino signal from 238U and 232Th and completely insensitive to 40K antineutrinos. Other kinds of radioactive decay are also missed by the detector, but compared to uranium, thorium, and potassium are negligible contributors to Earth's heat.

Additional factors that have to be taken into account include how the radioactive elements are distributed (whether uniformly or concentrated in a "sunken layer" at the core-mantle boundary), variations due to radioactive elements in the local geology (in KamLAND's case, less than 10 percent of the expected flux), antineutrinos from fission products, and how neutrinos oscillate as they travel through the crust and mantle. Alternate theories were also considered, including the speculative idea that there may be a natural nuclear reactor somewhere deep inside the Earth, where fissile elements have accumulated and initiated a sustained fission reaction.

KamLAND detected 841 candidate antineutrino events between March of 2002 and November of 2009, of which about 730 were reactor events or other background. The rest, about 111, were from radioactive decays of uranium and thorium in the Earth. These results were combined with data from the Borexino experiment at Gran Sasso in Italy to calculate the contribution of uranium and thorium to Earth's heat production. The answer was about 20 terawatts; based on models, another three terawatts were estimated to come from other isotope decays.

This is more heat energy than the most popular BSE model suggests, but still far less than Earth's total. Says Freedman, "One thing we can say with near certainty is that radioactive decay alone is not enough to account for Earth's heat energy. Whether the rest is primordial heat or comes from some other source is an unanswered question."

Better models are likely to result when many more geoneutrino detectors are located in different places around the globe, including midocean islands where the crust is thin and local concentrations of radioactivity (not to mention nuclear reactors) are at a minimum.

Says Freedman, "This is what's called an inverse problem, where you have a lot of information but also a lot of complicated inputs and variables. Sorting those out to arrive at the best explanation among many requires multiple sources of data."



INFORMATION:

"Partial radiogenic heat model for Earth revealed by geoneutrino measurements," by the KamLAND Collaboration, Itaru Shimizu of Tohoku University, Sendai, Japan, corresponding author, is published in Nature Geoscience and is available in advanced online publication at http://www.nature.com/ngeo/index.html.

Berkeley Lab and UC Berkeley members of the KamLAND Collaboration include Thomas Banks, Thomas Bloxham, Jason Detwiler, Stuart Freedman, Brian Fujikawa, Ke Han, Richard Kadel, Hitoshi Murayama, Thomas O'Donnell, and Herbert Steiner. Besides Tohoku University, Lawrence Berkeley National Laboratory, and the University of California at Berkeley, member institutions of the KamLAND Collaboration are the Institute for the Physics and Mathematics of the Universe, Tokyo University, Kashiwa (of which Hitoshi Murayama is also the director); the University of Alabama, Tuscaloosa; the California Institute of Technology, Pasadena; Colorado State University, Fort Collins; Drexel University, Philadelphia; the University of Hawaii at Manoa; Kansas State University, Manhattan; Stanford University, Palo Alto, California; the University of Tennessee, Knoxville; Triangle Universities Nuclear Laboratory, Durham, and Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill; the University of Wisconsin at Madison, and NIKHEF (National Institute for Subatomic Physics), Amsterdam.

KamLAND is supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology and the U.S. Department of Energy's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.


[Attachments] See images for this press release:
What keeps the Earth cooking?

ELSE PRESS RELEASES FROM THIS DATE:

'Love your body' to lose weight

2011-07-19
Almost a quarter of men and women in England and over a third of adults in America are obese. Obesity increases the risk of diabetes and heart disease and can significantly shorten a person's life expectancy. New research published by BioMed Central's open access journal International Journal of Behavioral Nutrition and Physical Activity shows that improving body image can enhance the effectiveness of weight loss programs based on diet and exercise. Researchers from the Technical University of Lisbon and Bangor University enrolled overweight and obese women on a year-long ...

Genetic research confirms that non-Africans are part Neanderthal

2011-07-19
Some of the human X chromosome originates from Neanderthals and is found exclusively in people outside Africa, according to an international team of researchers led by Damian Labuda of the Department of Pediatrics at the University of Montreal and the CHU Sainte-Justine Research Center. The research was published in the July issue of Molecular Biology and Evolution. "This confirms recent findings suggesting that the two populations interbred," says Dr. Labuda. His team places the timing of such intimate contacts and/or family ties early on, probably at the crossroads ...

Newly developed fluorescent protein makes internal organs visible

Newly developed fluorescent protein makes internal organs visible
2011-07-19
July 17, 2011 – (BRONX, NY) – Researchers at Albert Einstein College of Medicine of Yeshiva University have developed the first fluorescent protein that enables scientists to clearly "see" the internal organs of living animals without the need for a scalpel or imaging techniques that can have side effects or increase radiation exposure. The new probe could prove to be a breakthrough in whole-body imaging – allowing doctors, for example, to noninvasively monitor the growth of tumors in order to assess the effectiveness of anti-cancer therapies. In contrast to other body-scanning ...

Heated AFM tip allows direct fabrication of ferroelectric nanostructures on plastic

Heated AFM tip allows direct fabrication of ferroelectric nanostructures on plastic
2011-07-19
Using a technique known as thermochemical nanolithography (TCNL), researchers have developed a new way to fabricate nanometer-scale ferroelectric structures directly on flexible plastic substrates that would be unable to withstand the processing temperatures normally required to create such nanostructures. The technique, which uses a heated atomic force microscope (AFM) tip to produce patterns, could facilitate high-density, low-cost production of complex ferroelectric structures for energy harvesting arrays, sensors and actuators in nano-electromechanical systems (NEMS) ...

Study of soil effects from March 11 Japan earthquake could improve building design

Study of soil effects from March 11 Japan earthquake could improve building design
2011-07-19
Japan's March 11 Tohoku Earthquake is among the strongest ever recorded, and because it struck one of the world's most heavily instrumented seismic zones, this natural disaster is providing scientists with a treasure trove of data on rare magnitude 9 earthquakes. Among the new information is what is believed to be the first study of how a shock this powerful affects the rock and soil beneath the surface. Analyzing data from multiple measurement stations, scientists at the Georgia Institute of Technology found that the quake weakened subsurface materials by as much as ...

Retired NFL players at higher risk for mild cognitive impairment

2011-07-19
MAYWOOD, Ill. -- Retired NFL football players are at higher risk for mild cognitive impairment, which can be a precursor to Alzheimer's disease, a Loyola University Health System study has found. A screening survey of 513 retired players and their wives found that 35 percent of the players had scores suggesting possible mild cognitive impairment (MCI). Their average age was 61. "It appears there may be a very high rate of cognitive impairment in these retired football players, compared to the general population in that age range," said neuropsychologist Christopher Randolph, ...

Trastuzumab and chemotherapy improved survival in HER2-postive breast and brain cancer patients

2011-07-19
PHILADELPHIA — The use of trastuzumab, chemotherapy and surgery among women with HER2-positive metastatic breast cancer significantly improved survival from the time central nervous system metastases were diagnosed. Based on these study results, lead researcher Adam Brufsky, M.D., Ph.D., said, "We clearly now know that these women should get trastuzumab and potentially chemotherapy, even if cancer spreads to the brain." "Women with HER2-positive breast cancer have a reasonable chance of living a long time with their disease, and they should be given aggressive therapy ...

Annals of Internal Medicine tip sheet for July 19, 2011

2011-07-19
1. Testing for the Lynch Syndrome in All Colorectal Cancer Patients Cost-effective Relatives of Those Who Test Positive Are at Increased Risk and Should Also be Tested The Lynch syndrome is the most common genetic cause of colorectal cancer and is also associated with endometrial and other types of cancer. While only three percent of colorectal cancer patients carry the gene, it has been suggested that testing for the Lynch syndrome in all patients newly diagnosed with colorectal cancer could help identify families at risk. Researchers used a computer model to estimate ...

HIV therapies provide near normal lifespan in Africa

2011-07-19
A landmark study by the BC Centre for Excellence in HIV/AIDS (BC-CfE) and the University of British Columbia (UBC) shows that patients in Africa receiving combination antiretroviral therapy (cART) for HIV can expect to live a near normal lifespan. The study, published today in the prestigious Annals of Internal Medicine, is the first large-scale analysis of life expectancy outcomes in Africa for HIV patients on cART and shows significant variance between patient subgroups. Females have a significantly higher life expectancy than men, and in all participants, early initiation ...

Deep below the Deepwater Horizon oil spill

Deep below the Deepwater Horizon oil spill
2011-07-19
For the first time, scientists gathered oil and gas directly as it escaped from a deep ocean wellhead — that of the damaged Deepwater Horizon oil rig. What they found allows a better understanding of how pollution is partitioned and transported in the depths of the Gulf of Mexico and permits superior estimation of the environmental impact of escaping oil, allowing for a more precise evaluation of previously estimated repercussions on seafloor life in the future. The explosion of the Deepwater Horizon rig in April 2010 was both a human and an environmental catastrophe. ...

LAST 30 PRESS RELEASES:

Understanding bias and discrimination in AI: Why sociolinguistics holds the key to better Large Language Models and a fairer world 

Safe and energy-efficient quasi-solid battery for electric vehicles and devices

Financial incentives found to help people quit smoking, including during pregnancy

Rewards and financial incentives successfully help people to give up smoking

HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

[Press-News.org] What keeps the Earth cooking?
Berkeley Lab scientists join their KamLAND colleagues to measure the radioactive sources of Earth's heat flow