PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

UC Davis scientists find new role for P53 genetic mutation -- initiation of prostate cancer

Discovery alters traditional view of how prostate cancer develops

2012-06-08
(Press-News.org) (SACRAMENTO, Calif.) — A team of UC Davis investigators has found that a genetic mutation may play an important role in the development of prostate cancer. The mutation of the so-called p53 (or Tp53) gene was previously implicated in late disease progression, but until now has never been shown to act as an initiating factor. The findings may open new avenues for diagnosing and treating the disease.

The study was published online in the journal Disease Models & Mechanisms and will appear in the November 2012 print edition in an article titled, "Initiation of prostate cancer in mice by Tp53R270H: Evidence for an alternate molecular progression," and is available online.

"Our team found a molecular pathway to prostate cancer that differs from the current conventional wisdom of how the disease develops," said Alexander Borowsky, associate professor of pathology and laboratory medicine and principal investigator of the study. "With this new understanding, research can go in new directions to possibly develop new diagnostics and refine therapy."

Prostate cancer is the leading cancer diagnosis in men in the United States. Although it is curable in about 80 percent of men with localized disease, the rate is much lower if the cancer is highly virulent and has spread beyond the prostate gland.

The investigators developed a mouse model genetically engineered to have a mutation in the "tumor suppressor" gene, p53, specifically in the cells of the prostate gland. These mice were significantly more likely to develop prostate cancer than control mice without the mutation, and provided the first indication that the p53 mutation could be involved in the initiation of prostate cancer. They also note that the mutation of p53 in the prostate differs from loss or "knock-out" of the gene, which suggests that the mechanism is more complicated than simply a "loss of tumor suppression" and appears to involve an actively oncogenic function of the mutant gene.

The p53 gene encodes for a protein that normally acts as a tumor suppressor, preventing the replication of cells that have suffered DNA damage. Mutation of the gene, which can occur through chemicals, radiation or viruses, causes cells to undergo uncontrolled cell division. The p53 mutation has been implicated in the initiation of other malignancies, including breast, lung and esophageal cancers.

Other studies have associated p53 mutation with disease progression in prostate cancer, but this is the first to find that it can have a role in the early initiation of prostate cancer, as well.

Until now, understanding of the role of p53 was that mutation occurred exclusively as a late event in the course of prostate cancer. Based on the findings in the new mouse model that the researchers developed, p53 mutation not only can initiate prostate cancer but might also be associated with early progression toward more aggressive forms of the disease.

Genetic mutations can initiate cancers in a variety of ways. Those include promotion of uncontrolled cell growth and loss of the gene's normal cell growth-suppressor functions. Exactly how the p53 mutation promotes the initiation and progression of prostate cancer remains to be clarified and is a focus of current research by the UC Davis team. They also are trying to gain an understanding of how the p53 mutation affects the effectiveness of standard treatments for prostate cancer, such as radiation and hormone therapy.

Another application of the discovery could be the development of a new diagnostic test for prostate cancer based on the presence of the p53 mutation as a biomarker.

"Knowing that prostate cancer can develop via p53 mutation opens new opportunities for researchers in the field," said Borowsky. "This is a game-changer in the understanding of prostate cancer."

###Other UC Davis study authors were Ralph de Vere White and Ruth Vinall of the Department of Urology, and Jane Qian Chen, N.E. Hubbard and Shola Sulaimon of the Center for Comparative Medicine. Borowsky is also affiliated with the UC Davis Center for Comparative Medicine.

UC Davis Comprehensive Cancer Center is the only National Cancer Institute-designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its specialists provide compassionate, comprehensive care for more than 9,000 adults and children every year, and access to more than 150 clinical trials at any given time. Its innovative research program engages more than 280 scientists at UC Davis, Lawrence Livermore National Laboratory and Jackson Laboratory (JAX West), whose scientific partnerships advance discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis collaborates with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer care. Its community-based outreach and education programs address disparities in cancer outcomes across diverse populations. For more information, visit cancer.ucdavis.edu.


ELSE PRESS RELEASES FROM THIS DATE:

Stanford researchers help predict the oceans of the future with a mini-lab

2012-06-08
Stanford Woods Institute for the Environment researchers have helped open a new door of possibility in the high-stakes effort to save the world's coral reefs. Working with an international team, the scientists – including Stanford Woods Institute Senior Fellows Jeff Koseff, Rob Dunbar and Steve Monismith – found a way to create future ocean conditions in a small lab-in-a-box in Australia's Great Barrier Reef. The water inside the device can mimic the composition of the future ocean as climate change continues to alter Earth. Inside the mini-lab, set in shallow water ...

Mystery to the origin of long-lived, skin-deep immune cells uncovered

2012-06-08
Scientists at A*STAR's Singapore Immunology Network (SIgN) uncovered the origin of a group of skin-deep immune cells that act as the first line of defence against harmful germs and skin infections. SIgN scientists discovered that these sentry cells of the skin, called the Langerhans cells (LCs), originate from two distinct embryonic sites - the early yolk sac and the foetal liver. LCs are dendritic cells (DCs) found in the outermost layer of the skin. DCs are a critical component of the immune system because they are the only cells able to 'see' and 'alert' other responding ...

Virgin male moths think they're hot when they're not

Virgin male moths think theyre hot when theyre not
2012-06-08
SALT LAKE CITY, June 6, 2012 – Talk about throwing yourself into a relationship too soon. A University of Utah study found that when a virgin male moth gets a whiff of female sex attractant, he's quicker to start shivering to warm up his flight muscles, and then takes off prematurely when he's still too cool for powerful flight. So his headlong rush to reach the female first may cost him the race. The study illustrates the tradeoff between being quick to start flying after a female versus adequately warming up the flight muscles before starting the chase. Until the ...

Vampire jumping spiders identify victims by their antennae

2012-06-08
Evarcha culicivora jumping spiders, also known as vampire spiders, are picky eaters by any standards. Explaining that the arachnid's environment is swamped with insects, Ximena Nelson from the University of Canterbury, New Zealand, says, 'You can see from the diet when you find them in the field that there is a high number of mosquitoes in what they eat'. And when Robert Jackson investigated their diet further, he found that the spiders were even more selective. The delicacy that E. culicivora prize above all others is female blood-fed Anopheles mosquitoes, which puzzled ...

Pre-existing mutations can lead to drug resistance in HIV virus

2012-06-08
In a critical step that may lead to more effective HIV treatments, Harvard scientists have found pre-existing mutations in a small number of HIV patients. These mutations can cause the virus to develop resistance to the drugs used to slow its progression. The finding is particularly important because, while researchers have long known HIV can develop resistance to some drugs, it was not understood whether the virus relied on pre-existing mutations to develop resistance, or if it waits for those mutations to occur. By shedding new light on how resistance evolves, the study, ...

Study sheds new light on role of genetic mutations in colon cancer development

2012-06-08
SEATTLE – In exploring the genetics of mitochondria – the powerhouse of the cell – researchers at Fred Hutchinson Cancer Research Center have stumbled upon a finding that challenges previously held beliefs about the role of mutations in cancer development. For the first time, researchers have found that the number of new mutations are significantly lower in cancers than in normal cells. "This is completely opposite of what we see in nuclear DNA, which has an increased overall mutation burden in cancer," said cancer geneticist Jason Bielas, Ph.D., whose findings are published ...

Gladstone scientists reprogram skin cells into brain cells

Gladstone scientists reprogram skin cells into brain cells
2012-06-08
SAN FRANCISCO, CA—June 7, 2012—Scientists at the Gladstone Institutes have for the first time transformed skin cells—with a single genetic factor—into cells that develop on their own into an interconnected, functional network of brain cells. The research offers new hope in the fight against many neurological conditions because scientists expect that such a transformation—or reprogramming—of cells may lead to better models for testing drugs for devastating neurodegenerative conditions such as Alzheimer's disease. This research comes at a time of renewed focus on Alzheimer's ...

All the colors of a high-energy rainbow, in a tightly focused beam

All the colors of a high-energy rainbow, in a tightly focused beam
2012-06-08
For the first time, researchers have produced a coherent, laser-like, directed beam of light that simultaneously streams ultraviolet light, X-rays, and all wavelengths in between. One of the few light sources to successfully produce a coherent beam that includes X-rays, this new technology is the first to do so using a setup that fits on a laboratory table. An international team of researchers, led by engineers from the NSF Engineering Research Center (ERC) for EUV Science and Technology, reports their findings in the June 8, 2012, issue of Science. By focusing intense ...

Bright X-ray flashes created in laser lab

Bright X-ray flashes created in laser lab
2012-06-08
A breakthrough in laser science was achieved in Vienna: In the labs of the Photonics Institute at the Vienna University of Technology, a new method of producing bright laser pulses at x-ray energies was developed. The radiation covers a broad energy spectrum and can therefore be used for a wide range of applications, from materials science to medicine. Up until now, similar kinds of radiation could only be produced in particle accelerators (synchrotrons), but now a laser laboratory can also achieve this. The new laser technology was presented in the current issue of the ...

Newly identified protein function protects cells during injury

2012-06-08
CINCINNATI – Scientists have discovered a new function for a protein that protects cells during injury and could eventually translate into treatment for conditions ranging from cardiovascular disease to Alzheimer's. Researchers report online June 7 in the journal Cell that a type of protein called thrombospondin activates a protective pathway that prevents heart cell damage in mice undergoing simulated extreme hypertension, cardiac pressure overload and heart attack. "Our results suggest that medically this protein could be targeted as a way to help people with many ...

LAST 30 PRESS RELEASES:

From drops to data: Advancing global precipitation estimates with the LETKF algorithm

SeoulTech researchers propose a novel method to shed light on PFOS-induced neurotoxicity

Large-scale TMIST breast cancer screening trial achieves enrollment goal, paving the way for data that provides a precision approach to screeninge

Study published in NEJM Catalyst finds patients cared for by MedStar Health’s Safe Babies Safe Moms program have better outcomes in pregnancy, delivery, and postpartum

Octopus arms have segmented nervous systems to power extraordinary movements

Protein shapes can help untangle life’s ancient history

Memory systems in the brain drive food cravings that could influence body weight

Indigenous students face cumbersome barriers to attaining post-secondary education

Not all Hot Jupiters orbit solo

Study shows connection between childhood maltreatment and disease in later life

Discovery of two planets sheds new light on the formation of planetary systems

New West Health-Gallup survey finds incoming Trump administration faces high public skepticism over plans to lower healthcare costs

Reading signs: New method improves AI translation of sign language

Over 97 million US residents exposed to unregulated contaminants in their drinking water

New large-scale study suggests no link between common brain malignancy and hormone therapy

AI helps to identify subjective cognitive decline during the menopause transition

Machine learning assisted plasmonic absorbers

Healthy lifestyle changes shown to help low back pain

Waking up is not stressful, study finds

Texas A&M AgriLife Research aims for better control of widespread tomato spotted wilt virus

THE LANCET DIABETES & ENDOCRINOLOGY: Global Commission proposes major overhaul of obesity diagnosis, going beyond BMI to define when obesity is a disease.

Floating solar panels could support US energy goals

Long before the L.A. fires, America’s housing crisis displaced millions

Breaking barriers: Collaborative research studies binge eating disorders in older Hispanic women

UVA receives DURIP grant for cutting-edge ceramic research system

Gene editing extends lifespan in mouse model of prion disease

Putting a lid on excess cholesterol to halt bladder cancer cell growth

Genetic mutation linked to higher SARS-CoV-2 risk

UC Irvine, Columbia University researchers invent soft, bioelectronic sensor implant

Harnessing nature to defend soybean roots

[Press-News.org] UC Davis scientists find new role for P53 genetic mutation -- initiation of prostate cancer
Discovery alters traditional view of how prostate cancer develops