(Press-News.org) Producing strong, lightweight and complex parts for car manufacturing and the aerospace industry is set to become cheaper and more accurate thanks to a new technique developed by engineers from the University of Exeter. The research team has developed a new method for making three-dimensional aluminium composite parts by mixing a combination of relatively inexpensive powders.
Combining these elements causes a reaction which results in the production of particles that are 600 times smaller than the width of a human hair. Around 100 nanometres in size, the reaction uniformly distributes them through the material, making it very strong.
The process is based on the emerging technique of Selective Laser Manufacturing (SLM), in which laser manufactures complicated parts from metal powders, at the University's Centre for Additive Layer Manufacturing. The new technique has the potential to manufacture aluminium composite parts as pistons, drive shafts, suspension components, brake discs and almost any structural components of cars or aeroplanes. It also enables the production of lighter structural designs with innovative geometries leading to further reduce of the weight of products.
The team's latest research findings are published in the Journal of Alloys and Compounds.
Parts for cars and aeroplanes are widely made from aluminium, which is relatively light, with other reinforcement particles to make it stronger. The traditional methods, generally involved casting and mechanical alloying, can be inaccurate and expensive, especially when the part has a complex shape. Over the last decade, new SLM techniques have been developed, which enable parts with more complicated shapes to be produced. The new SLM techniques can be applied to manufacture aluminium composite parts from specific powder mixtures.
To carry out this new technique, the researchers use a laser to melt a mixture of powders, composed of aluminium and a reactive reinforcing material for example an iron oxide combination. A reaction between the powders results in the formation of new particles, which act as reinforcements and distribute evenly throughout the composite material.
This method allows parts with complex shapes to be easily produced. The new materials have very fine particles compared with other composites, making them more robust. The reaction between constituents releases energy, which also means materials can be produced at a higher rate using less power. This technique is significantly cheaper and more sustainable than other SLM methods which directly blend very fine powders to manufacture composites.
University of Exeter PhD student Sasan Dadbakhsh said: "This new development has great potential to make high performance parts for car manufacturing, the aerospace industry and potentially other industries. Additive layer manufacturing technologies are becoming increasingly accessible so this method could become a viable approach for manufacturing."
Dr Liang Hao of the University of Exeter added: "This advancement allows the rapid development of sustainable lightweight composite components. This particularly helps to save a considerable amount of material, energy and cost for the production of one-off or small volume products."
INFORMATION:
The Centre for Additive Layer Manufacturing (CALM) is a £2.6 million investment in innovative manufacturing for the benefit of businesses in the South West and across the rest of the UK. CALM is delivered in collaboration with EADS UK Ltd.
END
Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have discovered that tiny vanadium pentoxide nanoparticles can inhibit the growth of barnacles, bacteria, and algae on surfaces in contact with water, such as ship hulls, sea buoys, or offshore platforms. Their experiments showed that steel plates to which a coating containing dispersed vanadium pentoxide particles had been applied could be exposed to seawater for weeks without the formation of deposits of barnacles, bacteria, and algae. In comparison, plates that were coated only with the ship's normal ...
A consortium of nine research centres has obtained the melon genome, a horticultural specie with high economic value around the world. It is the first time that a Spanish initiative that unites private and state-run centres has obtained the complete genome of a higher organism, in this case a plant, which produces flowers and seeds. Also, it has been done by applying massive sequencing technologies.
Besides the complete melon genome, scientists have obtained the particular genomes of seven melon varieties. The study is published in the magazine Proceedings of the National ...
The industry is interested in establishing a biorefinery sector in Denmark that can replace oil-based products with biofriendly materials, chemicals, energy and fuel. But this requires a larger biomass production than we are currently achieving. Scientists from University of Copenhagen and Aarhus University have published an extensive report that shows how we can increase the production of biomass by more than 200% in an environmentally friendly way.
The report called "The ten-million-tonne plan" shows how we can increase the Danish production of biomass from agriculture ...
Experts at The University of Nottingham are the first to create a stable version of a 'trophy molecule' that has eluded scientists for decades.
In research published in the prestigious journal Science, the team of chemists at Nottingham has shown that they can prepare a terminal uranium nitride compound which is stable at room temperature and can be stored in jars in crystallized or powder form.
Previous attempts to prepare uranium-nitrogen triple bonds have required temperatures as low as 5 Kelvin (-268 °C) — roughly the equivalent temperature of interstellar space ...
A new approach to testing medical treatment options could ensure that more patients get the most beneficial treatment for them – but still yield valuable research results that stand up to scientific scrutiny.
The approach tries to overcome a huge chicken-and-egg problem in medical research: Not enough people volunteer for studies of new treatments partly because researchers can't promise the studies will help them -- but without enough volunteers, researchers can't study new treatment options.
But a new "adaptive" way of designing medical studies could help. In a ...
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida, the German Cancer Research Center in Heidelberg, and the International Agency for Research on Cancer in Lyon, France, conducted a case control study and found associations between having antibodies to certain types of cutaneous human papillomavirus (HPV) and a kind of skin cancer called squamous cell carcinoma (SCC).
Their study, the first case-control study to investigate the association between SCC and cutaneous HPV types belonging to five different genera, appeared in a recent ...
Amsterdam, NL, July 2, 2012 – After stroke, patients often suffer from dysphagia, a swallowing disorder that results in greater healthcare costs and higher rates of complications such as dehydration, malnutrition, and pneumonia. In a new study published in the July issue of Restorative Neurology and Neuroscience, researchers have found that transcranial direct current stimulation (tDCS), which applies weak electrical currents to the affected area of the brain, can enhance the outcome of swallowing therapy for post-stroke dysphagia.
"Our pilot study demonstrated that ...
PROVIDENCE, R.I. [Brown University] — What makes laparoscopic surgery "minimally invasive" — instruments enter the patient through narrow tubes — also makes it visually constraining. As they work on different tasks, surgeons all see the same view. What if each surgeon could control a separate view best suited to the specific task? In a new paper, pediatric surgeon Dr. Francois Luks and his team of co-authors at Brown University and Hasbro Children's Hospital report that in a small in vitro trial, surgeons with their own views performed faster and more accurately.
"When ...
Researchers are closer to understanding the biology behind GHB, a transmitter substance in the brain, best known in its synthetic form as the illegal drug fantasy. These findings have just been published in the scientific journal PNAS.
In the 1960s, gamma-hydroxybutyric acid (GHB) was first discovered as a naturally occurring substance in the brain. Since then it has been manufactured as a drug with a clinical application and has also developed a reputation as the illegal drug fantasy and as a date rape drug. Its physiological function is still unknown. Researchers identify ...
Amsterdam, NL, July 2, 2012 – Growing evidence suggests that Parkinson's disease (PD) often starts with non-motor symptoms that precede diagnosis by several years. In the first study to examine patterns in the quality of life of Parkinson' disease patients prior to diagnosis, researchers have documented declines in physical and mental health, pain, and emotional health beginning several years before the onset of the disease and continuing thereafter. Their results are reported in the latest issue of Journal of Parkinson's Disease.
"We observed a decline in physical function ...