PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

UMASS Medical School faculty annotate human genome for ENCODE project

UMMS poised to take the lead on next phase of ENCODE

2012-09-06
(Press-News.org) WORCESTER, MA — The first comprehensive decoding and annotation of the human genome is being published today by the ENCyclopedia Of DNA Elements (ENCODE) project, an international consortium of scientists from 32 institutions, including the University of Massachusetts Medical School. The groundbreaking ENCODE discovery appears in a set of 30 papers in Nature, Genome Research and Genome Biology.

Using data generated from 1,649 experiments – with prominent contributions from the labs of UMMS professors Job Dekker and Zhiping Weng – the group has assigned biochemical functions for an astounding 80 percent of the human genome. These findings promise to fundamentally change our understanding of how the tens of thousands of genes and hundreds of thousands of gene regulatory elements, or switches, contained in the human genome, interact in an overlapping regulatory network to determine human biology and disease.

As little as a decade ago, the human genome was viewed by scientists as a collection of independent genes that contained the instructions for making the proteins that carried out the basic biological functions necessary for life. Driven by this premise, most researchers focused on understanding the relatively small portion of the genome that made up protein-coding genes while the non-coding portion of the genome – often referred to as "junk DNA" – received little attention. The sequencing of the human genome in 2003 and more recent efforts by the ENCODE consortium, which is funded by the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH), and others over the last decade, has begun to fundamentally change researchers' views on the importance of the non-coding portion of the genome.

Scientists now know that the protein-coding portions of the genome make up only one part of our genetic picture. Of equal importance are those areas of the genome that regulate genes. These elements, such as regulatory DNA elements and non-coding RNA, control when a gene is turned on and off and can also amplify or curtail expression of a gene. Even a small change in when a gene is turned on can have a huge biological impact, or in specific circumstances, contribute to disease.

Taken together, genes and their regulatory elements create a vast network of overlapping systems that carry out the basic biological processes necessary for life, a system that scientists are only now beginning to understand. Using a wide variety of experimental and computational approaches, members of the ENCODE consortium have generated comprehensive information about the identities, locations and characteristics of human genes and regulatory switches throughout the genome. This data represents an expansive resource that biomedical researchers can use to begin unraveling how this system works and how it contributes to disease.

"This work provides a critical map of tens of thousands of genes and hundreds of thousands of regulatory switches that are scattered all over the 3 billion nucleotides of the genome," said Dr. Dekker, PhD, professor of biochemistry & molecular pharmacology and co-director of the Program in Systems Biology at UMMS. "As a group, we've identified more than 4 million sites that through binding specific proteins affect biological function."

Three dimensional wiring of the genome

What this map doesn't tell scientists, though, is which switches or elements regulate which genes. That is where the work of Dekker, the lead author on one of the six ENCODE papers that appear in Nature, provides unique insights. Over the last decade, Dekker has pioneered the development of chromosome conformation capture technologies (3C) and combined it with next-generation sequencing technologies (5C) to create three-dimensional models of folded chromosomes. In turn, these models can be used to determine which parts of the genome, when folded, come in physical contact.

"The genome is like a panel of light switches in a room full of lights," said Dekker, "except there are thousands of lights and almost a million switches. We don't know what switches turn on which lights. And some switches turn on the same lights or turn on multiple lights."

Over the last several years, it has become clear that one of the ways in which regulatory elements can turn genes on and off is through direct physical contact. As part of the ENCODE project, Dekker's task was to determine where these switches and genes were touching along the genome. To do this, Dekker and his team produced the first three dimensional diagram of a section of the genome that shows which gene regulatory switches touch, and control, which genes – in essence producing a wire diagram for the genome. "These switches can be located far from the genes they regulated in the one-dimensional genome sequence but in three dimensions, the chromosome is folded so that they physically touch," said Dekker.

In the Nature paper, Dekker and his UMMS colleagues discovered important patterns in the three dimensional wiring of the genome, which may help researchers understand how the genome is put together and works as a system. For instance, there is a preferred order and distance between regulatory elements and their targets. Identification of more such "rules" could help predict the three dimensional wiring between genes and regulatory elements for other genomes in the future and for understanding the genetics of disease.

"Genetic variation between individuals is often the result of differences in regulatory elements, not genes," said Dekker. "Unraveling the three dimensional wiring behind the system of switches and lights that makes up the genome will help us find genes that are misfiring because of a defect in a regulatory element that might be causing disease."

Transcription factors

Controlling many of these regulatory switches identified by Dekker is a type of protein called a transcriptional factor. The human genome has roughly 1,500 different transcription factors that bind to DNA, as well as, each other. Together, this complex interaction of DNA and proteins form intricate networks which control regulatory switches and dictate the expression levels of genes in a cell.

To understand how regulatory switches are turned on and off, members of the ENCODE project consortium went about systematically identifying where transcription factors bind to DNA in particular cell types and the expression levels of all the genes in those cells. With this experimental data in hand, a team led by Dr. Weng, PhD, director of the Program in Bioinformatics and Integrative Biology, set out to integrate all that information in an effort to better understand the basic components of transcriptional networks.

Using new computational methods developed in her lab, Weng and colleagues performed a comprehensive analysis on all 457 sets of transcriptional factor and DNA interaction data generated by the ENCODE consortium. The results of which are published in Genome Research.

What they found, according to Weng, was that "some regulatory factors like to bind to neighboring sites within the same switch in an effort to co-regulate a gene, while other transcription factors piggyback onto other transcription factors in order to exert another layer of control."

They also found in cells that use a particular regulatory switch, the DNA of the switch is depleted of nucleosomes, the storage unit for genomic DNA. In other cells, where the switch isn't needed however, the DNA making up the regulatory switches is packaged into nucleosomes. "It appears that the sequence features of the DNA in regulatory switches actually promote nucleosome formation, which is a great way to prevent turning on a switch in the wrong cell type," said Weng, "which could lead to disease or tumor formation."

Weng's lab published the results of two other studies in Genome Biology, the first of which describes a method for computationally predicting and experimentally testing binding sites for transcriptional factors inside regulatory switches. In the other study, Weng and colleagues built a computational algorithm that could predict the expression of a gene from the epigenetic state of its regulatory switch.

"Together, these three studies significantly further our understanding of gene regulation in the human genome," said Weng. "This new knowledge has an impact on improving human health because many diseases are caused, not by genetic defects in genes, but by miss-regulation of otherwise normal genes."

Next Steps

For the next phase of the ENCODE project Weng received a four year, $8 million grant from the NIH to lead the Data Analysis Center of the project. The effort will include researchers from the Massachusetts Institute of Technology, Yale University, the Dana-Farber Cancer Institute, Johns Hopkins University, the University of Washington and the Institut Municipal d'Investigacio Medica in Spain. Set to begin in September and working under the direction of Weng, the team will perform a comprehensive and integrative analysis of the data collected by the ENCODE consortium.

Meanwhile, Dekker and his laboratory will expand their work to map the 3D wiring of the entire genome. This includes analyzing the remaining 99 percent of the human genome for which long-range interactions between genes and switches have yet to be studied.

### About the University of Massachusetts Medical School The University of Massachusetts Medical School has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $250 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Physiology or Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts. For more information, visit www.umassmed.edu.


ELSE PRESS RELEASES FROM THIS DATE:

Toddlers increasingly swallowing liquid detergent capsules

2012-09-06
Doctors are calling for improved safety warnings and childproof packaging for laundry and dishwasher detergent liquitabs, following a cluster of incidents in which toddlers have inadvertently swallowed the capsules. The five cases, all of which occurred within the space of 18 months, are reported online in the Archives of Disease in Childhood. The youngest child was just 10 months old, and all the children were under the age of 2. All five children were admitted to one hospital in Glasgow as emergencies, emitting a high pitched wheeze (stridor) indicative of a blockage ...

UC Santa Cruz provides access to encyclopedia of the human genome

2012-09-06
SANTA CRUZ, CA--A massive international collaboration has enabled scientists to assign specific functions for 80 percent of the human genome, providing new insights into the mechanisms of gene regulation and giving biomedical researchers a solid genetic foundation for understanding how the body works in health and disease. The results of the Encyclopedia of DNA Elements (ENCODE) project are described in a coordinated set of 30 papers published in several journals on September 5, 2012. Scientists at the University of California, Santa Cruz, have operated the Data Coordination ...

Most English football teams don't follow international guidelines on concussion

2012-09-06
Most professional English football teams don't comply with international guidelines on concussion among players, which ensure they are safe to return to play, indicates research published online in the British Journal of Sports Medicine. The Consensus in Sport (CIS) guidelines were developed following the first international conference on concussion in sport in 2001. This was convened by the International Ice Hockey Federation, FIFA (Federation Internationale de Football Association), and the International Olympic Committee Medical Commission in recognition of the inevitability ...

Tests for silent neck artery narrowing to curb stroke risk: Waste of resources

2012-09-06
Tests to screen for "silent" neck artery narrowing in a bid to curb the risk of a stroke result in many unnecessary and costly surgical procedures, and ultimately save very few lives, concludes an editorial in the Journal of NeuroInterventional Surgery. In 2-6% of European men aged 60 plus, the major arteries supplying the brain (carotid arteries) are narrowed by 50-99%. This condition, termed carotid stenosis or atherosclerosis, accounts for 10-15% of strokes (data not in paper). Carotid atherosclerosis is commonest in those with mild peripheral arterial disease in ...

In massive genome analysis ENCODE data suggests 'gene' redefinition

2012-09-06
Cold Spring Harbor, N.Y. – Most people understand genes to be specific segments of DNA that determine traits or diseases that are inherited. Textbooks suggest that genes are copied ("transcribed") into RNA molecules, which are then used as templates for making protein – the highly diverse set of molecules that act as building blocks and engines of our cells. The truth, it now appears, is not so simple. As part of a huge collaborative effort called ENCODE (Encyclopedia of DNA Elements), a research team led by Cold Spring Harbor Laboratory (CSHL) Professor Thomas Gingeras, ...

Millions of DNA switches that power human genome's operating system are discovered

Millions of DNA switches that power human genomes operating system are discovered
2012-09-06
The locations of millions of DNA 'switches' that dictate how, when, and where in the body different genes turn on and off have been identified by a research team led by the University of Washington in Seattle. Genes make up only 2 percent of the human genome and were easy to spot, but the on/off switches controlling those genes were encrypted within the remaining 98 percent of the genome. Without these switches, called regulatory DNA, genes are inert. Researchers around the world have been focused on identifying regulatory DNA to understand how the genome works. ...

Call for a new approach to fighting tuberculosis

2012-09-06
Boston, MA – Each year, nearly 2 million people die from tuberculosis – a treatable disease that has been brought under control in the United States, but continues to ravage other parts of the world. This health inequity should prompt a complete rethinking of the way tuberculosis is fought on a global level, argue Salmaan Keshavjee, MD, PhD, and Paul Farmer, MD, PhD, from Brigham and Women's Hospital (BWH). Their argument appears in an essay published September 6 in the New England Journal of Medicine. "The global approach to fighting tuberculosis has been lacking," ...

Comprehensive transcriptome analysis of human ENCODE cells

2012-09-06
ENCODE, an international research project led by the National Human Genome Research Institute (NHGRI), has produced and analyzed 1649 data sets designed to annotate functional elements of the entire human genome. Data on transcription starting sites (TSS) contributed by a research team at the RIKEN Omics Science Center provided key anchor points linking the epigenetic status of genes observed at the 5' end directly to their RNA output. The ENCODE (Encyclopedia of DNA Elements) project aims to delineate all functional elements encoded in the human genome. Thirty-two institutes ...

Quantum physics at a distance

Quantum physics at a distance
2012-09-06
This press release is available in German. Physicists at the University of Vienna and the Austrian Academy of Sciences have achieved quantum teleportation over a record distance of 143 km. The experiment is a major step towards satellite-based quantum communication. The results have now been published in "Nature" (Advance Online Publication/AOP). An international team led by the Austrian physicist Anton Zeilinger has successfully transmitted quantum states between the two Canary Islands of La Palma and Tenerife, over a distance of 143 km. The previous record, set ...

Tough gel stretches to 21 times its length, recoils, and heals itself

Tough gel stretches to 21 times its length, recoils, and heals itself
2012-09-06
Cambridge, Mass. - September 5, 2012 - A team of experts in mechanics, materials science, and tissue engineering at Harvard have created an extremely stretchy and tough gel that may pave the way to replacing damaged cartilage in human joints. Called a hydrogel, because its main ingredient is water, the new material is a hybrid of two weak gels that combine to create something much stronger. Not only can this new gel stretch to 21 times its original length, but it is also exceptionally tough, self-healing, and biocompatible—a valuable collection of attributes that opens ...

LAST 30 PRESS RELEASES:

Spinal cord stimulation restores neural function, targets key feature of progressive neurodegenerative disease

Shut the nano gate! Electrical control of nanopore diameter

Cutting emissions in buildings and transport: Key strategies for 2050

How parents can protect children from mature and adult content

By studying neutron ‘starquakes’, scientists hope to transform their understanding of nuclear matter

Mouth bacteria may hold insight into your future brain function

Is cellular concrete a viable low-carbon alternative to traditional concrete for earthquake-resistant structures?

How does light affect citrus fruit coloration and the timing of peel and flesh ripening?

Male flies sharpened their eyesight to call the females' bluff

School bans alone not enough to tackle negative impacts of phone and social media use

Explaining science in court with comics

‘Living’ electrodes breathe new life into traditional silicon electronics

One in four chance per year that rocket junk will enter busy airspace

Later-onset menopause linked to healthier blood vessels, lower heart disease risk

New study reveals how RNA travels between cells to control genes across generations

Women health sector leaders good for a nation’s wealth, health, innovation, ethics

‘Good’ cholesterol may be linked to heightened glaucoma risk among over 55s

GLP-1 drug shows little benefit for people with Parkinson’s disease

Generally, things really do seem better in morning, large study suggests

Juicing may harm your health in just three days, new study finds

Forest landowner motivation to control invasive species depends on land use, study shows

Coal emissions cost India millions in crop damages

$10.8 million award funds USC-led clinical trial to improve hip fracture outcomes

University Hospitals Cleveland Medical Center among most reputable academic medical centers

Emilia Morosan on team awarded Kavli Foundation grant for quantum geometry-enabled superconductivity

Unlock sales growth: Implement “buy now, pay later” to increase customer spending

Research team could redefine biomedical research

Bridging a gap in carbon removal strategies

Outside-in signaling shows a route into cancer cells

NFL wives bring signature safe swim event to New Orleans

[Press-News.org] UMASS Medical School faculty annotate human genome for ENCODE project
UMMS poised to take the lead on next phase of ENCODE