(Press-News.org) VIDEO:
Fruit flies with a genetic tendency toward fever-induced seizures (top) are the first to stop moving freely and are swept aside by a gentle air current as the temperature rises....
Click here for more information.
PROVIDENCE, R.I. [Brown University] — In a newly reported set of experiments that show the value of a particularly precise but difficult genetic engineering technique, researchers at Brown University and the University of California–Irvine have created a Drosophila fruit fly model of epilepsy to discern the mechanism by which temperature-dependent seizures happen.
The researchers used a technique called homologous recombination — a more precise and sophisticated technique than transgenic gene engineering — to give flies a disease-causing mutation that is a direct analogue of the mutation that leads to febrile epileptic seizures in humans. They observed the temperature-dependent seizures in whole flies and also observed the process in their brains. What they discovered is that the mutation leads to a breakdown in the ability of certain cells that normally inhibit brain overactivity to properly regulate their electrochemical behavior.
In addition to providing insight into the neurology of febrile seizures, said Robert Reenan, professor of biology at Brown and a co-corresponding author of the paper published this week in the Journal of Neuroscience, the study establishes the fruit fly model as a viable genetic platform for the study of epilepsy and validates the use of homologous recombination, which could also be applied to other genetically linked diseases.
"This is the first time anyone has introduced a human disease-causing mutation overtly into the same gene that flies possess," Reenan said.
Engineering seizures
Homologous recombination (HR) starts with the transgenic technique of harnessing a transposable element (jumping gene) to insert a specially mutated gene just anywhere into the fly's DNA, but then goes beyond that to ultimately place the mutated gene into exactly the same position as the natural gene on the X chromosome. HR does this by outfitting the gene to be handled by the cell's own DNA repair mechanisms, essentially tricking the cell into putting the mutant copy into exactly the right place. Reenan's success with the technique allowed him to win a special grant from the National Institutes of Health last year.
The new paper is a result of that grant and Reenan's collaboration with neurobiologist Diane O'Dowd at UC–Irvine. Reenan and undergraduate Jeff Gilligan used HR to insert a mutated version of the para gene in fruit flies that is a direct parallel of the mutation in the human gene SCN1A that causes febrile seizures in people.
When the researchers placed flies in tubes and bathed the tubes in 104-degree F water, the mutant fruit flies had seizures after 20 seconds in which their legs would begin twitching followed by wing flapping, abdominal curling, and an inability to remain standing. After that, they remained motionless for as long as half an hour before recovering. Unaltered flies, meanwhile, exhibited no temperature-dependent seizures.
The researchers also found that seizure susceptibility was dose-dependent. Female flies with mutant strains of both copies of the para gene (females have two copies of the X chromosome) were the most susceptible to seizures. Those in whom only one copy of the gene was a mutant were less likely than those with two to seize, but more likely than the controls.
While the researchers at Brown compared the seizure susceptibility of whole flies, O'Dowd, lead author Lei Sun, and colleagues at Irvine studied individual fly neurons implicated in seizure activity to see how they behaved as the brains were heated. What their measurements revealed in the mutant flies were flaws in how "GABAergic" neurons take in sodium through channels in the cell membrane. Under normal circumstances, the neurons inhibit brain overactivity. But the mutants' mishandling of sodium led them to fail electrically.
"When [O'Dowd's team] isolates those currents due to the sodium channel, which is what's mutated in this case, and she compares the normal animals to the disease-model animals, what happens is the mutant channels pass too much current," Reenan said. "The channels open too easily and they take more effort to close. They open too soon and they close too late. That effect is magnified at higher temperature. Then the neuron can't send any [inhibitory] signals."
Searching for therapies
With a useful genetic model of epilepsy in fruit flies, Reenan said he is optimistic that researchers can now look for potential treatments for the disease. The next step, he said, is to use the practice of "forward genetics" to look for further mutations that might counter febrile seizures.
Given thousands of flies with model of the disease, scientists can purposely subject them to different DNA-altering conditions and then look to see if any flies lose their propensity for seizures. Among those that do, the researchers can then identify the specific genetic alteration responsible and determine whether that could ever be clinically applied. For example, if it turns out that a mutation proves therapeutic because it causes a certain protein to be overexpressed, then perhaps that protein could be refined into some kind of biologic pharmaceutical.
Reenan said he'd expect to see researchers follow a similar roadmap for other diseases as well.
"Knock-in of specific disease-causing mutations into the fly genome has the potential to provide a rapid and low-cost platform for studying the cellular mechanisms of heritable human diseases," the authors wrote. "In addition, knock-in flies can be used in combination with forward genetic screens to identify suppressor and/or enhancer mutations, a strategy that is challenging in humans and rodent models but well established in Drosophila."
###
In addition to Reenan, Gilligan, O'Dowd and Sun, other authors are Cynthia Staber of Brown and Ryan Schutte and Vivian Nguyen of UC Irvine.
In addition to the National Institutes of Health, the Howard Hughes Medical Institue and the Ellison Medical Foundation funded the research.
Engineered flies spill secret of seizures
2012-10-12
ELSE PRESS RELEASES FROM THIS DATE:
Researchers work across fields to uncover information about hadrosaur teeth
2012-10-12
GAINESVILLE, Fla. — An unusual collaboration between researchers in two disparate fields resulted in a new discovery about the teeth of 65-million-year-old dinosaurs.
With the help of University of Florida mechanical engineering professor W. Gregory Sawyer and UF postdoctoral researcher Brandon Krick, Florida State University paleobiologist Gregory Erickson determined the teeth of hadrosaurs — an herbivore from the late Cretaceous period — had six tissues in their teeth instead of two. The results were published in the journal Science Oct. 5.
"When something has been ...
Notre Dame researcher helps make Sudoku puzzles less puzzling
2012-10-12
For anyone who has ever struggled while attempting to solve a Sudoku puzzle, University of Notre Dame researcher Zoltan Toroczkai and Notre Dame postdoctoral researcher Maria Ercsey-Ravaz are riding to the rescue. They can not only explain why some Sudoku puzzles are harder than others, they have also developed a mathematical algorithm that solves Sudoku puzzles very quickly, without any guessing or backtracking.
Toroczkai and Ravaz of Romania's Babes-Boylai University began studying Sudoku as part of their research into the theory of optimization and computational complexity. ...
Mug handles could help hot plasma give lower-cost, controllable fusion energy
2012-10-12
Researchers around the world are working on an efficient, reliable way to contain the plasma used in fusion reactors, potentially bringing down the cost of this promising but technically elusive energy source. A new finding from the University of Washington could help contain and stabilize the plasma using as little as 1 percent of the energy required by current methods.
"All of a sudden the current energy goes from being almost too much to almost negligible," said lead author Thomas Jarboe, a UW professor of aeronautics and astronautics. He presents the findings this ...
More than just 'zoning out' -- Exploring the cognitive processes behind mind wandering
2012-10-12
It happens innocently enough: One minute you're sitting at your desk, working on a report, and the next minute you're thinking about how you probably need to do laundry and that you want to try the new restaurant down the street. Mind wandering is a frequent and common occurrence. And while mind wandering in certain situations – in class, for example – can be counterproductive, some research suggests that mind wandering isn't necessarily a bad thing.
New research published in the journals of the Association for Psychological Science explores mind wandering in various ...
Duke Medicine news -- Anti-cancer drug fights immune reaction in some infants with Pompe disease
2012-10-12
DURHAM, N.C. – Adding a third anti-cancer agent to a current drug cocktail appears to have contributed to dramatic improvement in three infants with the most severe form of Pompe disease -- a rare, often-fatal genetic disorder characterized by low or no production of an enzyme crucial to survival.
Duke researchers previously pioneered the development of the first effective treatment for Pompe disease via enzyme replacement therapy (ERT). ERT relies on a manufactured enzyme/protein to act as a substitute for the enzyme known to be lacking in patients with a particular disease. ...
New studies reveal connections between animals' microbial communities and behavior
2012-10-12
Athens, Ga. – New research is revealing surprising connections between animal microbiomes—the communities of microbes that live inside animals' bodies—and animal behavior, according to a paper by University of Georgia ecologist Vanessa O. Ezenwa and her colleagues. The article, just published in the Perspectives section of the journal Science, reviews recent developments in this emerging research area and offers questions for future investigation.
The paper grew out of a National Science Foundation-sponsored workshop on new ways to approach the study of animal behavior. ...
Enzyme triggers cell death in heart attack
2012-10-12
University of Iowa researchers have previously shown that an enzyme called CaM kinase II plays a pivotal role in the death of heart cells following a heart attack or other conditions that damage or stress heart muscle. Loss of beating heart cells is generally permanent and leads to heart failure, a serious, debilitating condition that affects 5.8 million people in the United States.
Now the UI team, led by Mark Anderson, M.D., Ph.D., professor and head of internal medicine at the UI Carver College of Medicine, has honed in on how CaM kinase II triggers heart cell death ...
New treatments for epilepsy, behavioral disorders could result from Wayne State studies
2012-10-12
Three studies conducted as part of Wayne State University's Systems Biology of Epilepsy Project (SBEP) could result in new types of treatment for the disease and, as a bonus, for behavioral disorders as well.
The SBEP started out with funds from the President's Research Enhancement Fund and spanned neurology, neuroscience, genetics and computational biology. It since has been supported by multiple National Institutes of Health-funded grants aimed at identifying the underlying causes of epilepsy, and it is uniquely integrated within the Comprehensive Epilepsy Program at ...
Safety results of intra-arterial stem cell clinical trial for stroke presented
2012-10-12
HOUSTON – (Oct. 11, 2012) – Early results of a Phase II intra-arterial stem cell trial for ischemic stroke showed no adverse events associated with the first 10 patients, allowing investigators to expand the study to a targeted total of 100 patients.
The results were presented today by Sean Savitz, M.D., professor of neurology and director of the Stroke Program at The University of Texas Health Science Center at Houston (UTHealth), at the 8th World Stroke Congress in Brasilia, Brazil.
The trial is the only randomized, double-blind, placebo-controlled intra-arterial clinical ...
Satellite sees 16th Atlantic tropical depression born near Bahamas
2012-10-12
The 16th tropical depression of the Atlantic Ocean season has formed northeast of the Bahamas and NOAA's GOES-14 satellite captured a visible image of the storm as it tracks to the southwest.
NOAA's GOES-14 satellite captured a visible image of newborn Tropical Depression 16 (TD16) near the Bahamas on Oct. 11 at 7:45 a.m. EDT. TD16 appeared as a rounded area of clouds just northeast of the Bahamas and its western fringes were just off the Florida east coast. GOES-14 also showed another low pressure area with the potential for development a few hundred miles from the Windward ...