PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Computer simulations yield clues to how cells interact with surroundings

Berkeley Lab research has implications for cancer, atherosclerosis research

2013-03-22
(Press-News.org) Your cells are social butterflies. They constantly interact with their surroundings, taking in cues on when to divide and where to anchor themselves, among other critical tasks.

This networking is driven in part by proteins called integrin, which reside in a cell's outer plasma membrane. Their job is to convert mechanical forces from outside the cell into internal chemical signals that tell the cell what to do. That is, when they work properly. When they misfire, integrins can cause diseases such as atherosclerosis and several types of cancer.

Despite their importance—good and bad—scientists don't exactly know how integrins work. That's because it's very difficult to experimentally observe the protein's molecular machinery in action. Scientists have yet to obtain the entire crystal structure of integrin within the plasma membrane, which is a go-to way to study a protein's function. Roadblocks like this have ensured that integrins remain a puzzle despite years of research.

But what if there was another way to study integrin? One that doesn't rely on experimental methods? Now there is, thanks to a computer model of integrin developed by Berkeley Lab researchers. Like its biological counterpart, the virtual integrin snippet is about twenty nanometers long. It also responds to changes in energy and other stimuli just as integrins do in real life. The result is a new way to explore how the protein connects a cell's inner and outer environments.

"We can now run computer simulations that reveal how integrins in the plasma membrane translate external mechanical cues to chemical signals within the cell," says Mohammad Mofrad, a faculty scientist in Berkeley Lab's Physical Biosciences Division and associate professor of Bioengineering and Mechanical Engineering at UC Berkeley. He conducted the research with his graduate student Mehrdad Mehrbod.

They report their research in a recent issue of PLOS Computational Biology: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002948

Their "molecular dynamics" model is the latest example of computational biology, in which scientists use computers to analyze biological phenomena for insights that may not be available via experiment. As you'd expect from a model that accounts for the activities of half a million atoms at once, the integrin model takes a lot of computing horsepower to pull off. Some of its simulations require 48 hours of run time on 600 parallel processors at the U.S. Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC), which is located at Berkeley Lab.

The model is already shedding light on what makes integrin tick, such as how they "know" to respond to more force with greater numbers. When activated by an external force, integrins cluster together on a cell's surface and join other proteins to form structures called focal adhesions. These adhesions recruit more integrins when they're subjected to higher forces. As the model indicates, this ability to pull in more integrins on demand may be due to the fact that a subunit of integrin is connected to actin filaments, which form a cell's skeleton.

"We found that if actin filaments sustain more forces, they automatically bring more integrins together, forming a larger cluster," says Mehrbod.

The model may also help answer a longstanding question: Do integrins interact with each other immediately after they're activated? Or do they not interact with each other at all, even as they cluster together?

To find out, the scientists ran simulations that explored whether it's physically possible for integrins to interact when they're embedded in the plasma membrane. They found that interactions are likely to occur only between one compartment of integrin called the β-subunit.

They also discovered an interesting pattern in which integrins fluctuate. Two integrin sections, one that spans the cell membrane and one that protrudes from the cell, are connected by a hinge-like region. This hinge swings about when the protein is forced to vibrate as a result of frequent kicks from other molecules around it, such as water molecules, lipids, and ions.

These computationally obtained insights could guide new experiments designed to uncover how integrins do their job.

"Our research sets up an avenue for future studies by offering a hypothesis that relates integrin activation and clustering," says Mofrad.

###

The research was supported by a National Science Foundation CAREER award to Mofrad. NERSC is supported by DOE's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

END



ELSE PRESS RELEASES FROM THIS DATE:

Huge and widespread volcanic eruptions triggered the end-Triassic extinction

2013-03-22
CAMBRIDGE, MA -- More than 200 million years ago, a massive extinction decimated 76 percent of marine and terrestrial species, marking the end of the Triassic period and the onset of the Jurassic. This devastating event cleared the way for dinosaurs to dominate Earth for the next 135 million years, taking over ecological niches formerly occupied by other marine and terrestrial species. It's not entirely clear what caused the end-Triassic extinction, although most scientists agree on a likely scenario: Over a relatively short period of time, massive volcanic eruptions ...

Energy drinks may increase blood pressure, disturb heart rhythm

2013-03-22
Energy drinks may increase blood pressure and disturb your heart's natural rhythm, according to research presented at the American Heart Association's Epidemiology and Prevention/Nutrition, Physical Activity and Metabolism 2013 Scientific Sessions. Researchers analyzed data from seven previously published observational and interventional studies to determine how consuming energy drinks might impact heart health. In the first part of the pooled analysis, the researchers examined the QT interval of 93 people who had just consumed one to three cans of energy drinks. They ...

Eating too much salt led to 2.3 million heart-related deaths worldwide in 2010

2013-03-22
Eating too much salt contributed to 2.3 million deaths from heart attacks, strokes and other heart-related diseases throughout the world in 2010, representing 15 percent of all deaths due to these causes, according to research presented at the American Heart Association's Epidemiology and Prevention/Nutrition, Physical Activity and Metabolism 2013 Scientific Sessions. The researchers analyzed 247 surveys of adult sodium intake, stratified by age, gender, region and country between 1990 and 2010 as part of the 2010 Global Burden of Diseases Study, an international collaborative ...

Most pre-packaged meals, snacks for toddlers contain too much salt

2013-03-22
Nearly 75 percent of commercial pre-packaged meals and savory snacks for toddlers are high in sodium, according to research presented at the American Heart Association's Epidemiology and Prevention/Nutrition, Physical Activity and Metabolism 2013 Scientific Sessions. In the first study to look at the sodium content in U.S. baby and toddler foods, researchers compared the sodium content per serving of 1,115 products for babies and toddlers using data on major and private label brands compiled by the U.S. Centers for Disease Control (CDC). Baby food was categorized as intended ...

Poor kidney response to hormone may increase risks for kidney disease patients

2013-03-22
Highlights Suboptimal kidney response to the hormone FGF-23 may put chronic kidney disease patients at increased risk of premature death and cardiovascular events. Resistance to the hormonal actions of FGF-23 in the kidney may identify novel aspects of kidney dysfunction. 60 million people globally have chronic kidney disease. Washington, DC (March 21, 2013) — The kidneys' response to a particular hormone may affect kidney disease patients' heart health and longevity, according to a study appearing in an upcoming issue of the Journal of the American Society ...

Healthy lifestyle linked with longer survival among kidney disease patients

2013-03-22
Highlights Among individuals with chronic kidney disease, adherence to a healthy lifestyle was associated with a greater likelihood of surviving over a 13-year period. The greatest survival benefits were related to nonsmoking. 60 million people globally have chronic kidney disease. Washington, DC (March 21, 2013) — Certain lifestyle factors—such as not smoking, getting regular physical activity, and avoiding a low body weight—may help prolong the lives of individuals with chronic kidney disease (CKD), according to a study appearing in an upcoming issue of the ...

Education for kidney failure patients may improve chances living donor transplantation

2013-03-22
Highlights In an analysis of 695 patients with kidney failure, Blacks had received less transplant education, were less knowledgeable about transplantation, and were less willing to pursue deceased or living donor transplantation than Whites. Patients who began a transplant evaluation process with a greater knowledge of transplantation and greater motivation to receive living donor transplants were ultimately more successful at receiving a living donor transplant. In 2010, a total of 28,662 kidney transplants took place in the U.S. Of those, only 6,809 were from ...

Technique could help designers predict how legged robots will move on granular surfaces

Technique could help designers predict how legged robots will move on granular surfaces
2013-03-22
VIDEO: Using a combination of theory and experiment, Georgia Tech researchers have developed a new approach for understanding and predicting how small legged robots -- and potentially also animals -- move... Click here for more information. Using a combination of theory and experiment, researchers have developed a new approach for understanding and predicting how small legged robots – and potentially also animals – move on and interact with complex granular materials such ...

Stem cells use signal orientation to guide division, Stanford study shows

2013-03-22
STANFORD, Calif. — Cells in the body need to be acutely aware of their surroundings. A signal from one direction may cause a cell to react in a very different way than if it had come from another direction. Unfortunately for researchers, such vital directional cues are lost when cells are removed from their natural environment to grow in an artificial broth of nutrients and growth factors. Now, researchers at the Stanford University School of Medicine and the Howard Hughes Medical Institute have devised a way to mimic in the laboratory the spatially oriented signaling ...

Study: Serious mental illness no barrier to weight loss success

2013-03-22
Through a program that teaches simple nutrition messages and involves both counseling and regular exercise classes, people with serious mental illness can make healthy behavioral changes and achieve significant weight loss, according to new Johns Hopkins research. These weight loss amounts were similar to those in other successful programs studied with subjects in the general population — studies that specifically excluded people with serious mental illnesses, the researchers say. Results of the new research, believed to be the first large study of its kind to involve ...

LAST 30 PRESS RELEASES:

BioChatter: making large language models accessible for biomedical research

Grass surfaces drastically reduce drone noise making the way for soundless city skies

Extent of microfibre pollution from textiles to be explored at new research hub

Many Roads Lead to… the embryo

Dining out with San Francisco’s coyotes

What’s the mechanism behind behavioral side effects of popular weight loss drugs?

How employee trust in AI drives performance and adoption

Does sleep apnea treatment influence patients’ risk of getting into car accidents?

Do minimum wage hikes negatively impact students’ summer employment?

Exposure to stress during early pregnancy affects offspring into adulthood

Curious blue rings in trees and shrubs reveal cold summers of the past — potentially caused by volcanic eruptions

New frontiers in organic chemistry: Synthesis of a promising mushroom-derived compound

Biodegradable nylon precursor produced through artificial photosynthesis

GenEditScan: novel k-mer analysis tool based on next-generation sequencing for foreign DNA detection in genome-edited products

Survey: While most Americans use a device to monitor their heart, few share that data with their doctor

Dolphins use a 'fat taste' system to get their mother’s milk

Clarifying the mechanism of coupled plasma fluctuations using simulations

Here’s what’s causing the Great Salt Lake to shrink, according to PSU study

Can DNA-nanoparticle motors get up to speed with motor proteins?

Childhood poverty and/or parental mental illness may double teens’ risk of violence and police contact

Fizzy water might aid weight loss by boosting glucose uptake and metabolism

Muscular strength and good physical fitness linked to lower risk of death in people with cancer

Recommendations for studying the impact of AI on young people's mental health  proposed by Oxford researchers

Trump clusters: How an English lit graduate used AI to make sense of Twitter bios

Empty headed? Largest study of its kind proves ‘bird brain’ is a misnomer

Wild baboons not capable of visual self-awareness when viewing their own reflection

$14 million supports work to diversify human genome research

New study uncovers key mechanism behind learning and memory

Seeing the unseen: New method reveals ’hyperaccessible’ window in freshly replicated DNA

Extreme climate pushed thousands of lakes in West Greenland ‘across a tipping point,’ study finds

[Press-News.org] Computer simulations yield clues to how cells interact with surroundings
Berkeley Lab research has implications for cancer, atherosclerosis research