(Press-News.org) What is the long-range weather forecast for the giant planets Uranus and Neptune? These planets are home to extreme winds blowing at speeds of over 1000 km/hour, hurricane-like storms as large around as Earth, immense weather systems that last for years and fast-flowing jet streams. Both planets feature similar climates, despite the fact that Uranus is tipped on its side with the pole facing the sun during winter. The winds on these planets have been observed on their outer surfaces; but to get a grasp of their weather systems, we need to have an idea of what is going on underneath. For instance, do the atmospheric patterns arise from deep down in the planet, or are they confined to shallower processes nearer the surface? New research at the Weizmann Institute of Science, the University of Arizona and Tel Aviv University, which was published online Thursday in Nature, shows that the wind patterns seen on the surface can extend only so far down on these two worlds.
Understanding the atmospheric circulation is not simple for a planet without a solid surface, where Earth-style boundaries between solid, liquid and gas layers do not exist. Since the discovery of these strong atmospheric winds in the 1980s by the Voyager II spacecraft, the vertical extent of these winds has been a major puzzle – one that influences our understanding of the physics governing the atmospheric dynamics and internal structure of these planets. But a team led by Dr. Yohai Kaspi of the Weizmann Institute's Environmental Sciences and Energy Research Department realized they had a way, based on a novel method for analyzing the gravitational field of the planets, to determine an upper limit for the thickness of the atmospheric layer.
Deviations in the distribution of mass in planets cause measurable fluctuations in the gravitational field. On Earth, for example, an airplane flying near a large mountain feels the slight extra gravitational pull of that mountain. Like Earth, the giant planets of the solar system are rapidly rotating bodies. In fact all of them rotate faster than Earth; the rotation periods of Uranus and Neptune are about 17 and 16 hours, respectively. Because of this rapid rotation, the winds swirl around regions of high and low pressure. (In a non-rotating body, flow would be from high to low pressure.) This enables researchers to deduce the relations between the distribution of pressure and density, and the planets' wind field. These physical principles enabled Kaspi and his co-authors to calculate, for the first time, the gravity signature of the wind patterns and thus create a wind-induced gravity map of these planets.
By computing the gravitational fields of a large range of ideal planet models – ones with no wind – a task conducted by team member Dr. Ravit Helled of Tel Aviv University – and comparing them with the observed gravitational fields, upper limits to the meteorological contribution to the gravitational fields were obtained. This enabled Kaspi's team, which included Profs. Adam Showman and Bill Hubbard of the University of Arizona, and Prof. Oded Aharonson of the Weizmann Institute, to show that the streams of gas observed in the atmosphere are limited to a "weather-layer" of no more than about 1000 km in depth, which makes up only a fraction of a percent of the mass of these planets.
Although no spacecraft missions to Uranus and Neptune are planned for the near future, Kaspi anticipates that the team's findings will be useful in the analysis of another set of atmospheric circulation patterns that will be closely observed soon: those of Jupiter. Kaspi, Helled and Hubbard are part of the science team of NASA's Juno spacecraft to Jupiter. Juno was launched in 2011; upon reaching Jupiter in 2016 it will provide very accurate measurements of the gravity field of this giant gaseous planet. Using the same methods as the present study, Kaspi anticipates that they will be able to obtain the same type of information they acquired for Uranus and Neptune: namely, placing constraints on the depth of the atmospheric dynamics of this planet.
Uranus and Neptune are the farthest planets in the solar system, and there are still many open questions regarding their formation and composition. This study has implications for revealing the mysteries of their deep, dark interiors, and may even provide information about how these planets were formed. Moreover, many of the extrasolar planets detected around other stars have been found to have similar masses to those of Uranus and Neptune, so this research will be important for understanding like-sized extrasolar planets, as well.
Prof. Oded Aharonson's research is supported by the Helen Kimmel Center for Planetary Science, which he heads; the J & R Center for Scientific Research; and the estate of Joseph and Erna Lazard.
INFORMATION:
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.
Weather on the outer planets only goes so deep
Weizmann Institute researchers and their colleagues set an upper limit for the thickness of jet streams on Uranus and Neptune
2013-05-16
ELSE PRESS RELEASES FROM THIS DATE:
Nature: X-ray tomography on a living frog embryo
2013-05-16
This news release is available in German. Classical X-ray radiographs provide information about internal, absorptive structures of organisms such as bones. Alternatively, X-rays can also image soft tissues throughout early embryonic development of vertebrates. Related to this, a new X-ray method was presented recently in a Nature article published by a German-American-Russian research team led by KIT. For periods of about two hours, time-lapse sequences of cellular resolution were obtained of three dimensional reconstructions showing developing embryos of the African ...
Students' diet and physical activity improve with parent communications
2013-05-16
College students eat more fruits and vegetables and exercise more on days when they communicate more with their parents, according to researchers at Penn State.
"Only a third of college students consumes a diet that is consistent with national recommendations," said Meg Small, research associate in the Prevention Research Center for the Promotion of Human Development. "In addition, college students' physical activity levels decline from the first semester to their seventh semester. Our research suggests that parents may play an important role in influencing their adolescents ...
Genetic risk for schizophrenia is connected to reduced IQ
2013-05-16
Philadelphia, PA, May 16, 2013 – The relationship between the heritable risk for schizophrenia and low intelligence (IQ) has not been clear. Schizophrenia is commonly associated with cognitive impairments that may cause functional disability. There are clues that reduced IQ may be linked to the risk for developing schizophrenia. For example, reduced cognitive ability may precede the onset of schizophrenia symptoms. Also, these deficits may be present in healthy relatives of people diagnosed with schizophrenia.
In a remarkable new study published in Biological Psychiatry, ...
New insights into how materials transfer heat could lead to improved electronics
2013-05-16
TORONTO, ON – U of T Engineering researchers, working with colleagues from Carnegie Mellon University, have published new insights into how materials transfer heat, which could lead eventually to smaller, more powerful electronic devices.
Integrated circuits and other electronic parts have been shrinking in size and growing in complexity and power for decades. But as circuits get smaller, it becomes more difficult to dissipate waste heat. For further advances to be made in electronics, researchers and industry need to find ways of tracking heat transfer in products ranging ...
High-testosterone competitors more likely to choose red
2013-05-16
Why do so many sports players and athletes choose to wear the color red when they compete? A new study to be published in Psychological Science, a journal of the Association for Psychological Science, suggests that it may have to do with their testosterone levels.
The new study, conducted by psychological scientist Daniel Farrelly of the University of Sunderland and colleagues, demonstrated that males who chose red as their color in a competitive task had higher testosterone levels than other males who chose blue.
"The research shows that there is something special ...
Scientists capture first direct proof of Hofstadter butterfly effect
2013-05-16
A team of researchers from several universities – including UCF –has observed a rare quantum physics effect that produces a repeating butterfly-shaped energy spectrum in a magnetic field, confirming the longstanding prediction of the quantum fractal energy structure called Hofstadter's butterfly.
This discovery by the team paves the way for engineering new types of extraordinary nanoscale materials that can be used to develop smaller, lighter and faster electronics, including sensors, cell phones, tablets and laptops.
First predicted by American physicist Douglas Hofstadter ...
What role do processing bodies play in cell survival and protection against viral infection?
2013-05-16
New Rochelle, NY, May 16, 2013—As scientists learn more about processing bodies (PBs), granules present within normal cells, they are unraveling the complex role PBs play in maintaining cellular homeostasis by regulating RNA metabolism and cell signaling. Emerging research is revealing how virus infection alters PBs to enhance viral replication and how, in turn, PBs are able respond and limit a virus's ability to reproduce. This novel mechanism allows PBs to contribute to the body's immune defenses, as described in an article in DNA and Cell Biology, a peer-reviewed journal ...
Invasive crazy ants are displacing fire ants in areas throughout southeastern US
2013-05-16
AUSTIN, Texas — Invasive "crazy ants" are displacing fire ants in areas across the southeastern United States, according to researchers at The University of Texas at Austin. It's the latest in a history of ant invasions from the southern hemisphere and may prove to have dramatic effects on the ecosystem of the region.
The "ecologically dominant" crazy ants are reducing diversity and abundance across a range of ant and arthropod species — but their spread can be limited if people are careful not to transport them inadvertently, according to Ed LeBrun, a research associate ...
Innovative screening method uses RNA interference technology to identify 'lethal' and 'rescuer' genes
2013-05-16
New Rochelle, May 16, 2013–Lethal and rescuer genes are defined as genes that when inactivated result in cell death or enhanced cell growth, respectively. The ability to identify these genes in large-scale automated screening campaigns could lead to the discovery of valuable new drug targets. A genome-wide lethality screen that relies on RNA interference technology and led to the validation of 239 gene candidates essential for cell survival is described in ASSAY and Drug Development Technologies, a peer-reviewed journal published from Mary Ann Liebert, Inc., publishers. ...
Security risks found in sensors for heart devices, consumer electronics
2013-05-16
ANN ARBOR—The type of sensors that pick up the rhythm of a beating heart in implanted cardiac defibrillators and pacemakers are vulnerable to tampering, according to a new study conducted in controlled laboratory conditions.
Implantable defibrillators monitor the heart for irregular beating and, when necessary, administer an electric shock to bring it back into normal rhythm. Pacemakers use electrical pulses to continuously keep the heart in pace.
In experiments in simulated human models, an international team of researchers demonstrated that they could forge an erratic ...
LAST 30 PRESS RELEASES:
Thirty-year mystery of dissonance in the “ringing” of black holes explained
Less intensive works best for agricultural soil
Arctic rivers project receives “national champion” designation from frontiers foundation
Computational biology paves the way for new ALS tests
Study offers new hope for babies born with opioid withdrawal syndrome
UT, Volkswagen Group of America celebrate research partnership
New Medicare program could dramatically improve affordability for cancer drugs – if patients enroll
Are ‘zombie’ skin cells harmful or helpful? The answer may be in their shapes
University of Cincinnati Cancer Center presents research at AACR 2025
Head and neck, breast, lung and survivorship studies headline Dana-Farber research at AACR Annual Meeting 2025
AACR: Researchers share promising results from MD Anderson clinical trials
New research explains why our waistlines expand in middle age
Advancements in muon detection: Taishan Antineutrino Observatory's innovative top veto tracker
Chips off the old block
Microvascular decompression combined with nerve combing for atypical trigeminal neuralgia
Cutting the complexity from digital carpentry
Lung immune cell type “quietly” controls inflammation in COVID-19
Fiscal impact of expanded Medicare coverage for GLP-1 receptor agonists to treat obesity
State and sociodemographic trends in US cigarette smoking with future projections
Young adults drive historic decline in smoking
NFCR congratulates Dr. Robert C. Bast, Jr. on receiving the AACR-Daniel D. Von Hoff Award for Outstanding Contributions to Education and Training in Cancer Research
Chimpanzee stem cells offer new insights into early embryonic development
This injected protein-like polymer helps tissues heal after a heart attack
FlexTech inaugural issue launches, pioneering interdisciplinary innovation in flexible technology
In Down syndrome mice, 40Hz light and sound improve cognition, neurogenesis, connectivity
Methyl eugenol: potential to inhibit oxidative stress, address related diseases, and its toxicological effects
A vascularized multilayer chip reveals shear stress-induced angiogenesis in diverse fluid conditions
AI helps unravel a cause of Alzheimer's disease and identify a therapeutic candidate
Coalition of Autism Scientists critiques US Department of Health and Human Services Autism Research Initiative
Structure dictates effectiveness, safety in nanomedicine
[Press-News.org] Weather on the outer planets only goes so deepWeizmann Institute researchers and their colleagues set an upper limit for the thickness of jet streams on Uranus and Neptune