PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists develop powerful new method for finding therapeutic antibodies

As proof of principle, technique finds antibody that mimics key hormone for blood clotting

2013-05-23
(Press-News.org) LA JOLLA, CA – May 23, 2013 – Scientists at The Scripps Research Institute (TSRI) have devised a powerful new technique for finding antibodies that have a desired biological effect. Antibodies, which can bind to billions of distinct targets, are already used in many of the world's best-selling medicines, diagnostics and laboratory reagents. The newly reported technique should greatly speed the process of discovering such products.

"For the first time, we have a selection method whose power matches the vast diversity of the antibody repertoire," said Richard A. Lerner, the Lita Annenberg Hazen Professor of Immunochemistry at TSRI, member of the Department of Molecular Biology, and senior investigator for the new study, which appears in this week's issue of the Cell Press journal Chemistry and Biology.

As a demonstration of the potential of the new method, Lerner's team used it for the rapid discovery of an antibody that potently mimics thrombopoietin (TPO), a hormone that controls the production of clot-making platelets in blood.

"The time from selection of the target through discovery of the antibody and completion of initial animal tests totaled only about five months," said Hongkai Zhang, a research associate in the Lerner laboratory who was first author of the study.

The antibody already has been licensed to a pharmaceutical company for further development.

Fast Selection

Antibodies are large, Y-shaped proteins produced by immune cells called B-cells in humans and many other animals. To cope with diverse and ever-changing threats from microorganisms, B-cells are able to rearrange and mutate a small set of their genes, so that collectively they can produce billions of distinct antibodies.

About two decades ago, Lerner's laboratory developed some of the first techniques for using B-cell gene-mixing to generate very large "libraries" of antibodies and swiftly determine which of these can bind to a desired target. Since then, Lerner and his colleagues have used these techniques to discover a number of therapeutic antibodies, including the anti-inflammatory antibody Humira®, now one of the world's top-selling drugs.

In a major innovation reported last year, Lerner, Zhang and their colleagues developed a basic method for selecting antibodies that not only bind to a given target, such as a cell-surface receptor, but also have a desired biological function—such as activating the receptor on mammalian cells. The researchers demonstrated the method by using it to find a potent antibody mimic, or "agonist," of erythropoietin (EPO), a hormone that stimulates the production of red blood cells.

But this selection method has one drawback: it determines an antibody's ability to activate a desired biological pathway in a cell by measuring the resulting proliferation of that cell—a slow and only narrowly applicable indicator.

"We can use this cell-growth test to select for a lot of things—including the discovery of antibodies with potential medical uses – but Dr. Lerner and I wanted a more direct and generally applicable way of selecting for antibody function," Zhang said.

Two Million Test Cells Per Hour

The new method uses a sensitive "reporter system" in test cells, which gives off a fluorescent light signal as soon as an antibody succeeds in activating a receptor, or, in principle, any other targeted signaling pathway. The system also is set up so that each test cell produces a unique antibody, whose effect is confined to that cell. "Each cell represents a separate assay," said Zhang.

With automation technology that can maintain millions of these cultured test cells, infect them with viral vectors that deliver antibody genes, and then detect the cells that fluoresce, the technique is capable of screening two million test cells per hour.

In the new study, the team proved the value of the new technique by using it to discover a potent agonist of TPO, a hormone that is essential for the proper clotting of blood in wound healing. TPO agonists can treat conditions involving a scarcity of blood platelets, for example as a result of cancer chemotherapy.

However, drugs that structurally resemble the TPO hormone can be problematic; about 12 years ago a lab-grown, "recombinant" version of TPO failed in clinical trials when it was found to induce a deleterious anti-TPO antibody response. This left some patients with less TPO and a lowered platelet count—the opposite of the intended treatment effect. Since then, other TPO agonists have been developed without this problem. "But there's a real need for more TPO agonists that don't look like natural TPO," said Lerner.

The most powerful TPO agonist described in the study, antibody 3D9, performed much better in cell-culture tests—that is, required a much smaller amount to activate the TPO receptor on test cells—than TPO itself. At least part of the antibody's potency derives from its greater size and stability compared to a small molecule like TPO, which allows it to stay functional for a longer time.

The mouse TPO receptor is almost identical to human TPO receptor, so Zhang was able to test his antibody agonist in mice. A single, modest dose of 3D9 tripled platelet counts in mice over eight days—a much more potent effect than that reported for recombinant TPO. "This antibody is what I call a super-agonist, because it's more powerful than the authentic TPO agonist," said Lerner. "It also looks superior to the other commercial TPO agonists, based on their reported potencies."

Lerner, Zhang and their colleagues are currently using the new selection method to find other useful antibodies for a variety of applications. One such antibody agonist, which can turn stem-like cells in bone marrow into young brain cells, was described in a report in the Proceedings of the National Academy of Sciences last month.



INFORMATION:

Other contributors to the study, "Selecting Agonists from Single Cells Infected with Combinatorial Antibody Libraries," were Jia Xie and Diana Ruiz of the Lerner laboratory; Kyungmoo Yea of The Scripps Korea Antibody Institute; and TSRI's Ian A. Wilson, who is Hansen Professor of Structural Biology and chair of the Department of Integrative Structural and Computational Biology.

The study was supported by Hongye Innovation Antibody Technologies.



ELSE PRESS RELEASES FROM THIS DATE:

The world's favorite fruit only better-tasting and longer-lasting

2013-05-23
Tomatoes, said to be the world's most popular fruit, can be made both better-tasting and longer-lasting thanks to UK research with purple GM varieties. "Working with GM tomatoes that are different to normal fruit only by the addition of a specific compound, allows us to pinpoint exactly how to breed in valuable traits," said Professor Cathie Martin from the John Innes Centre. The research could also lead to GM varieties with better flavour, health and shelf life characteristics because even higher levels of the compounds can be achieved. In research to be published ...

Scientists announce top 10 new species

2013-05-23
Tempe, Ariz. — An amazing glow-in-the-dark cockroach, a harp-shaped carnivorous sponge and the smallest vertebrate on Earth are just three of the newly discovered top 10 species selected by the International Institute for Species Exploration at Arizona State University. A global committee of taxonomists — scientists responsible for species exploration and classification — announced its list of top 10 species from 2012 today, May 23. The announcement, now in its sixth year, coincides with the anniversary of the birth of Carolus Linnaeus — the 18th century Swedish botanist ...

Protein preps cells to survive stress of cancer growth and chemotherapy

2013-05-23
LA JOLLA, CA---Scientists have uncovered a survival mechanism that occurs in breast cells that have just turned premalignant-cells on the cusp between normalcy and cancers-which may lead to new methods of stopping tumors. In their Molecular Cell study, the Salk Institute researchers report that a protein known as transforming growth factor beta (TGF-β), considered a tumor suppressor in early cancer development, can actually promote cancer once a cell drifts into a pre-cancerous state. The discovery-a surprise to the investigators-raises the tantalizing possibility ...

UBC engineer helps pioneer flat spray-on optical lens

2013-05-23
A University of British Columbia engineer and a team of U.S. researchers have made a breakthrough utilizing spray-on technology that could revolutionize the way optical lenses are made and used. Kenneth Chau, an assistant professor in the School of Engineering at UBC's Okanagan campus, is a key investigator among colleagues at the National Institute of Standards and Technology in Maryland. Their work – the development of a flat lens – is published in the May 23 issue of the journal Nature. Nearly all lenses – whether in an eye, a camera, or a microscope – are presently ...

Hormone signal drives motor neuron growth, fish study shows

2013-05-23
A discovery made in fish could aid research into motor neuron disease. Scientists have found that a key hormone allows young zebrafish to develop and replace their motor neurons – a kind of nerve cell found in the spinal cord. The discovery may aid efforts to create neurons from stem cells in the lab, and support further research into a disorder for which there is still no cure. In humans, motor neurons control important muscle activities such as speaking, walking and breathing. When these cells stop working, it causes difficulties in motor functions and leads ...

Second-generation TAVI device -- Lotus Valve -- shows good performance in REPRISE II

2013-05-23
22 May 2013, Paris, France: The Lotus Valve, a second-generation transcatheter aortic valve implantation (TAVI) device, was successfully implanted in all of the first 60 patients in results from REPRISE II reported at EuroPCR 2013, which showed good device performance and low mortality at 30 days. "First generation TAVI devices provide significant clinical benefit, but there are opportunities for improvement," explained lead author Ian Meredith, Director of MonashHeart, Southern Health and Professor of Medicine, Monash University, Melbourne, Australia. He suggested that ...

Milwaukee-York researchers forward quest for quantum computing

2013-05-23
Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality. An on-going collaboration between physicists from York and the University of Wisconsin, Milwaukee, USA, is focusing on understanding, tailoring and tuning the electronic properties of topological insulators (TI) - new materials with surfaces that host a quantum state of matter – at the nanoscale. Understanding the properties of thin films of the new materials and integrating them with ...

Breakthrough on Huntington's disease

2013-05-23
Researchers at Lund University have succeeded in preventing very early symptoms of Huntington's disease, depression and anxiety, by deactivating the mutated huntingtin protein in the brains of mice. "We are the first to show that it is possible to prevent the depression symptoms of Huntington's disease by deactivating the diseased protein in nerve cell populations in the hypothalamus in the brain. This is hugely exciting and bears out our previous hypotheses", explains Åsa Petersén, Associate Professor of Neuroscience at Lund University. Huntington's is a debilitating ...

Researchers suggest boosting body's natural flu killers

2013-05-23
Jerusalem, May 13, 2013 – A known difficulty in fighting influenza (flu) is the ability of the flu viruses to mutate and thus evade various medications that were previously found to be effective. Researchers at the Hebrew University of Jerusalem have shown recently that another, more promising, approach is to focus on improving drugs that boost the body's natural flu killer system. Emergence of new influenza strains, such as the recent avian influenza (H5N1) and swine influenza (H1N1 2009), can lead to the emergence of severe pandemics that pose a major threat to the ...

Biochemistry: Unspooling DNA from nucleosomal disks

2013-05-23
The tight wrapping of genomic DNA around nucleosomes in the cell nucleus makes it unavailable for gene expression. A team of Ludwig-Maximilians-Universitaet (LMU) in Munich now describes a mechanism that allows chromosomal DNA to be locally displaced from nucleosomes for transcription. In higher organisms the genomic DNA is stored in the cell nucleus, wrapped around disk-shaped particles called nucleosomes, each consisting of two pairs of four different histone proteins and accommodating two loops of DNA. Packed in this way to form chromatin, the DNA is protected, but ...

LAST 30 PRESS RELEASES:

Previous experience affects family planning decisions of people with hereditary dementia

Does obesity affect children’s likelihood of survival after being diagnosed with cancer?

Understanding bias and discrimination in AI: Why sociolinguistics holds the key to better Large Language Models and a fairer world 

Safe and energy-efficient quasi-solid battery for electric vehicles and devices

Financial incentives found to help people quit smoking, including during pregnancy

Rewards and financial incentives successfully help people to give up smoking

HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

[Press-News.org] Scientists develop powerful new method for finding therapeutic antibodies
As proof of principle, technique finds antibody that mimics key hormone for blood clotting