(Press-News.org) CAMBRIDGE, MA -- If you got beat up by a bully on your walk home from school every day, you would probably become very afraid of the spot where you usually met him. However, if the bully moved out of town, you would gradually cease to fear that area.
Neuroscientists call this phenomenon "memory extinction": Conditioned responses fade away as older memories are replaced with new experiences.
A new study from MIT reveals a gene that is critical to the process of memory extinction. Enhancing the activity of this gene, known as Tet1, might benefit people with posttraumatic stress disorder (PTSD) by making it easier to replace fearful memories with more positive associations, says Li-Huei Tsai, director of MIT's Picower Institute for Learning and Memory.
The Tet1 gene appears to control a small group of other genes necessary for memory extinction. "If there is a way to significantly boost the expression of these genes, then extinction learning is going to be much more active," says Tsai, the Picower Professor of Neuroscience at MIT and senior author of a paper appearing in the Sept. 18 issue of the journal Neuron.
The paper's lead authors are Andrii Rudenko, a postdoc at the Picower Institute, and Meelad Dawlaty, a postdoc at the Whitehead Institute.
New and old memories
Tsai's team worked with researchers in Rudolf Jaenisch's lab at the Whitehead to study mice with the Tet1 gene knocked out. Tet1 and other Tet proteins help regulate the modifications of DNA that determine whether a particular gene will be expressed or not. Tet proteins are very abundant in the brain, which made scientists suspect they might be involved in learning and memory.
To their surprise, the researchers found that mice without Tet1 were perfectly able to form memories and learn new tasks. However, when the team began to study memory extinction, significant differences emerged.
To measure the mice's ability to extinguish memories, the researchers conditioned the mice to fear a particular cage where they received a mild shock. Once the memory was formed, the researchers then put the mice in the cage but did not deliver the shock. After a while, mice with normal Tet1 levels lost their fear of the cage as new memories replaced the old ones.
"What happens during memory extinction is not erasure of the original memory," Tsai says. "The old trace of memory is telling the mice that this place is dangerous. But the new memory informs the mice that this place is actually safe. There are two choices of memory that are competing with each other."
In normal mice, the new memory wins out. However, mice lacking Tet1 remain fearful. "They don't relearn properly," Rudenko says. "They're kind of getting stuck and cannot extinguish the old memory."
In another set of experiments involving spatial memory, the researchers found that mice lacking the Tet1 gene were able to learn to navigate a water maze, but were unable to extinguish the memory.
Control of memory genes
The researchers found that Tet1 exerts its effects on memory by altering the levels of DNA methylation, a modification that controls access to genes. High methylation levels block the promoter regions of genes and prevent them from being turned on, while lower levels allow them to be expressed.
Many proteins that methylate DNA have been identified, but Tet1 and other Tet proteins have the reverse effect, removing DNA methylation. The MIT team found that mice lacking Tet1 had much lower levels of hydroxymethylation — an intermediate step in the removal of methylation — in the hippocampus and the cortex, which are both key to learning and memory.
These changes in demethylation were most dramatic in a group of about 200 genes, including a small subset of so-called "immediate early genes," which are critical for memory formation. In mice without Tet1, the immediate early genes were very highly methylated, making it difficult for those genes to be turned on.
In the promoter region of an immediate early gene known as Npas4 — which Yingxi Li, the Frederick A. and Carole J. Middleton Career Development Assistant Professor of Neuroscience at MIT, recently showed regulates other immediate early genes — the researchers found methylation levels close to 60 percent, compared to 8 percent in normal mice.
"It's a huge increase in methylation, and we think that is most likely to explain why Npas4 is so drastically downregulated in the Tet1 knockout mice," Tsai says.
Keeping genes poised
The researchers also discovered why the Tet1-deficient mice are still able to learn new things. During fear conditioning, methylation of the Npas4 gene goes down to around 20 percent, which appears to be low enough for the expression of Npas4 to turn on and help create new memories. The researchers suspect the fear stimulus is so strong that it activates other demethylation proteins — possibly Tet2 or Tet3 — that can compensate for the lack of Tet1.
During the memory-extinction training, however, the mice do not experience such a strong stimulus, so methylation levels remain high (around 40 percent) and Npas4 does not turn on.
The findings suggest that a threshold level of methylation is necessary for gene expression to take place, and that the job of Tet1 is to maintain low methylation, ensuring that the genes necessary for memory formation are poised and ready to turn on at the moment they are needed.
The researchers are now looking for ways to increase Tet1 levels artificially and studying whether such a boost could enhance memory extinction. They are also studying the effects of eliminating two or all three of the Tet enzymes.
"This will not only help us further delineate epigenetic regulation of memory formation and extinction, but will also unravel other potential functions of Tets and methylation in the brain beyond memory extinction," Dawlaty says.
INFORMATION:
The research was funded by the National Institutes of Health, the Simons Foundation and the Howard Hughes Medical Institute.
Written by Anne Trafton, MIT News Office
END
COLUMBIA, Mo. – Individuals often turn to others for advice when making choices. Perhaps, it seems fitting then, that individuals would seek out others when they are faced with important health decisions. Yet, health communicators have debated whether stories should be included in patient decision-aids (which are informational materials designed to help patients make educated choices about their health) because they worry stories are too biased. Now, an MU researcher has found that stories used in decision-aids don't necessarily bias patients' decision-making; rather, certain ...
ROCHESTER, Minn. -- A genetic mutation, known as GBA, that leads to early onset of Parkinson's disease and severe cognitive impairment (in about 4 to 7 percent of all patients with the disease) also alters how specific lipids, ceramides and glucosylceramides are metabolized. Mayo Clinic researchers have found that Parkinson's patients who do not carry the genetic mutation also have higher levels of these lipids in the blood. Further, those who had Parkinson's and high blood levels were also more likely to have cognitive impairment and dementia. The research was recently ...
MIAMI, FLORIDA, (September 18, 2013)—You might find it hard to believe that dust clouds from the African Sahara can travel thousands of miles across the Atlantic Ocean, but it does every year and in large quantities. In a recent study, Joseph Prospero, professor emeritus at the University of Miami Rosenstiel School of Marine and Atmospheric Science and collaborators at the University of Houston and Arizona State University found that the average air concentrations of inhalable particles more than doubled during a major Saharan dust intrusion in Houston, Texas.
...
Using technology he helped develop, Vanderbilt University scientist Bryan Venters, Ph.D., has shed new light on the "dark matter" of the genome and has begun to explore a possible new approach to treating cancer.
"Clarity is everything," said Venters, assistant professor of Molecular Physiology and Biophysics who further developed the high-resolution technology as a postdoctoral fellow in the lab of Frank Pugh, Ph.D., at Pennsylvania State University before moving to Vanderbilt in January.
Venters and Pugh are co-authors of a paper published this week in the journal ...
The extra demands on parents of chronically ill children cause stress that affects the whole family, according to a systematic review conducted by Case Western Reserve University researchers that also explored what factors in the child's care most contribute to the added strain.
The findings, reported in the August issue of the Journal of Pediatric Psychology article, "Parenting Stress Among Caregivers of Children With Chronic Illness: A Systematic Review," were based on an assessment of 96 peer-reviewed studies in 12 countries between 1980 and 2012.
Researchers examined ...
Sequencing the DNA of an organism, whether human, plant, or jellyfish, has become a straightforward task, but assembling the information gathered into something coherent remains a massive data challenge. Researchers using computational resources at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, have created a faster and more effective way to assemble genomic information, while increasing
In a paper presented the past month at the 39th International Conference on Very Large Databases (VLDB2013) in Riva del Garda, Italy, Xifeng Yan, ...
PROVIDENCE, R.I. [Brown University] — To stay ahead in the race against drug-resistant infections, scientists constantly search for and exploit vulnerabilities in deadly bacteria. Now, researchers from Brown and the Massachusetts Institute of Technology have used a novel compound to exploit an Achilles' heel in the bacterium that causes tuberculosis.
In a series of laboratory experiments, the researchers have shown that it is possible to kill Mycobacterium tuberculosis by inhibiting ClpP, a cellular enzyme that is not targeted by any antibacterial drug on the market. ...
CLEMSON, S.C. — Cattle are what they eat. The forage — grasses and other plants — beef cattle eat affects the nutrition and tastiness of the meat. Clemson University animal science researchers report that steers grazing on one of five forages kept in paddocks showed significant differences in growth, carcass and meat quality.
The research can help cattle producers with alternatives to corn and feed when they are looking to add weight and value to their animals prior to sale.
A team of researchers supported by the Clemson University Experiment Station, Extension Service ...
Wednesday, September 18, 2013 [Granada, Spain] – New research findings on avocado consumption, presented as two posters at the IUNS 20th International Congress of Nutrition, in Granada, Spain suggest that although calorie consumption at dinner was unchanged, inclusion or addition of fresh Hass Avocado to a meal may help to reduce hunger and the desire to eat in overweight adults. Results also showed that including or adding avocado to a meal resulted in smaller post-meal rises in insulin compared to eating a meal without avocado.
Findings were based on a Hass Avocado ...
When it comes to fat, you want the brown type and not so much of the white variety because brown fat burns energy to keep you warm and metabolically active, while white fat stores excess energy around your waist, causing health problems. Researchers at The University of Texas Health Science Center at Houston (UTHealth) Medical School are studying brown fat with a goal of fighting obesity.
Right now, it is hard for researchers to spot brown fat cells at the molecular level, which is hindering efforts to harness their ability to guard against obesity. To address that issue, ...