(Press-News.org) Boulder, Colo., USA – A Canadian team lead by Stephen Grasby reports the discovery of the highest latitude perennial spring known in the world. This high-volume spring demonstrates that deep groundwater circulation through the cryosphere occurs, and can form gullies in a region of extreme low temperatures and with morphology remarkably similar to those on Mars. The 2009 discovery raises many new questions because it remains uncertain how such a high-volume spring can originate in a polar desert environment.
Grasby and colleagues encountered the northernmost perennial spring in the world, which they have dubbed the Ice River Spring, on Ellesmere Island, Nunavut, Canadian High Arctic. The specific study area is north of Otto Fiord in a mountainous region underlain by carbonates of the Nansen Formation. The spring discharges at 300 m elevation from colluvium on a south-facing (21° incline) mountain slope. The unnamed mountain rises 800 m above sea level. Detailed recordings show that this spring flows year-round, even during 24 hours of darkness in the winter months, when air temperatures are as low as minus 50 degrees Celsius.
Detailed geochemistry shows that the waters originate from the surface and circulate down as deep as 3 km before returning through thick permafrost as a spring. This points to a much more active hydrogeological system in polar regions than previously thought possible, which is perhaps driven by glacial meltwater.
Another intriguing feature of the Ice River site is the remarkable similarity to mid-latitude gullies observed on Mars. The discovery of these features on Mars has led to suggestions that recent groundwater discharge has occurred from confined aquifers.
FEATURED ARTICLE
Deep groundwater circulation through the High Arctic cryosphere forms Mars-like gullies
Stephen E. Grasby et al., Geological Survey of Canada, Natural Resources Canada, 3303 33rd Street NW, Calgary, Alberta T2L 2A7, Canada, and Dept. of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada. Published online 9 June 2014; http://dx.doi.org/10.1130/G35599.1.
Other Geology articles (see below) cover such topics as
The anatomy of an active submarine volcano;
Great tsunami-causing earthquakes in Alaska over past 100 years;
Reef mound in the Great Australian Bight; and
Evolution of lumpy glacial landscapes.
Geology articles published online ahead of print can be accessed online at http://geology.gsapubs.org/content/early/recent. All abstracts are open-access at http://geology.gsapubs.org/; representatives of the media may obtain complimentary articles by contacting Kea Giles at the address above.
Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to Geology in articles published. Contact Kea Giles for additional information or assistance.
Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.
Anatomy of an active submarine volcano
A.F. Arnulf et al., Scripps Institution of Oceanography, Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, University of California-San Diego, La Jolla, California 92093, USA. Published online 9 June 2014; http://dx.doi.org/10.1130/G35629.1.
Geophysicists are always looking for new ways to study the internal workings of volcanoes. On land, obtaining decent coverage with active source seismology is challenging because of the inhospitable terrain, but with modern marine seismology acquisition and processing methods, Earth processes can be visualized with unprecedented fidelity, resolving features on the order of tens of meters. In their study published online for Geology on 9 June 2014, A.F. Arnulf and colleagues applied innovative methods to image the thickest magma reservoir observed, to date, beneath any ocean spreading center. Their results for Axial Volcano, a submarine volcano offshore of the Pacific Northwest, reveal a complex melt body beneath the summit caldera that is approx. 14 km long, 3 km wide, and up to 1 km thick. This 18- to 30-cubic-kilometer magma reservoir is comparable in size and volume with a famous California landmark: the Yosemite Valley. Previous studies imaged upper crustal melt lenses that are ~50-100 m thick and 1-2 km wide, which lie above a partially molten lower crust where magma cools and crystallizes to form the gabbroic lower crust. The larger magma chamber, greater size, and activity of Axial Volcano arise from the intersection of the Juan de Fuca Ridge with the Cobb hotspot chain.
Great tsunamigenic earthquakes during the past 1000 yr on the Alaska megathrust
Ian Shennan et al., Sea Level Research Unit, Dept. of Geography, Durham University, Durham DH1 3LE, UK. Published online 9 June 2014; http://dx.doi.org/10.1130/G35797.1.
This paper by Ian Shennan and colleagues uses evidence from sediments preserved in coastal marshes from the Kodiak archipelago, the fossils contained within the sediments, and radiocarbon dating to demonstrate that rupture patterns along the Alaska megathrust in the last few centuries differ to those observed during the 20th century. They have a much shorter recurrence interval than those used in current seismic hazard assessment maps. Shennan and colleagues combine new observations with previous geological, historical, and archaeological investigations. They suggest that in addition to multi-segment ruptures (Prince William Sound and Kodiak segments rupturing together) in 1964 and AD 1020 to 1150 (95% age estimate), a single segment rupture (Kodiak segment alone) occurred in 1788, with earthquake-induced land surface subsidence across much of Kodiak Island and a tsunami that is recorded in historical documents and in sediment sequences, and another, similar rupture of the same Kodiak segment AD 1440 to 1620. These indicate shorter intervals between ruptures of the Kodiak segment than previously thought, and are more frequent than for the Prince William Sound segment.
Giant middle Eocene bryozoan reef mounds in the Great Australian Bight
Alexander G.W.D Sharples et al., School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK. Published online 9 June 2014; http://dx.doi.org/10.1130/G35704.1.
A series of mid-Eocene reef mound complexes have been discovered in the Great Australian Bight, some 100 miles south of Australia. The greater than 500-km-long reef mound complexes are composed of bryozoan build ups and herald the birth of the largest cool-water carbonate province in the southern hemisphere. The reef mounds formed due to a complete shut-down of clastic sediment input from Australia and rising sea level caused by accelerated separation of Australia and Antarctica. The reef mounds were discovered some 500 m beneath the seafloor and mapped utilizing oil-industry and academic two-dimensional seismic profiles. Calibration was given by cuttings samples from an exploration borehole, Potoroo-1, which directly penetrates a mounded complex. Further insights regarding the growth and demise of the reef mound complexes and their paleo-biological and -oceanographic significance will require targeted seismic profiling and, ultimately, coring to retrieve continuous recovery.
Evolution of lumpy glacial landscapes
Robert S. Anderson, Dept. of Geological Sciences, and Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, Colorado 80303, USA. Published online 9 June 2014; http://dx.doi.org/10.1130/G35537.1.
At small scales, glaciated valleys are lumpy. They sport rocky knobs with smooth abraded up-valley surfaces and sharp, quarried down-valley edges. Using numerical models, I address the evolution of glacial landforms in order to explore the dependence of bed topography on both glacier and rock properties. Sliding of a glacier against its rocky bed, a prerequisite for both erosion processes of abrasion and quarrying, is governed by water pressures at the glacier bed. On daily timescales, variations in water pressure associated with snow and ice melt cycles result in expansion and collapse of water-filled cavities at the bed that in turn repetitively stress corners in the bed. Numerical models of glacial bed evolution at longer timescales incorporate both abrasion and quarrying of fracture-bound blocks. Using a rule in which the probability of block quarrying during a stress event depends inversely upon both block size and the depth of the niche in which it sits, up-glacier migrating rocky bumps inevitably emerge, reflecting efficient quarrying of blocks from down-valley facing steps in the bed. The relative importance of abrasion and quarrying is controlled by fracture spacing, and major steps in the valley floor are attributable to transitions in fracture spacing.
Dramatic effects of stress on metamorphic reactions
John Wheeler, Dept. of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK. Published online 9 June 2014; http://dx.doi.org/10.1130/G35718.1.
A new analysis of how mineral growth is controlled in the Earth shows that stresses may have an effect far larger than hitherto expected. This means that the ways we interpret the minerals observed in once deeply buried rocks require reappraisal. Stress in the Earth is a key aspect of its behavior and this theory paves the way for how ancient stress levels might be deduced from rocks in new ways. In the Earth, stresses result from, for example, movement of tectonic plates. As stress is applied slowly over time, rocks deform and change shape forming aligned mineral textures which are very common. Despite this it has previously been assumed the effects of stress on new mineral growth are small. New calculations show the effects of stress are much bigger and this means that current interpretations of mineral growth require modification; the theory presents a new quantitative way to think about mineral growth during deformation in rocks. It may also be of interest in metallurgy. Metals, like rocks, are actually interlocked crystals of different chemistries and are often processed by deformation which occurs in parallel with chemical change.
Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA
Tiffany A. Rivera et al., Quaternary Dating Laboratory, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark, and Dept. of Geosciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA. Published online 9 June 2014; http://dx.doi.org/10.1130/G35808.1.
The Huckleberry Ridge Tuff is the product of the largest eruption at Yellowstone. The mineral zircon, present within this volcanic deposit, has been analyzed for its chemical composition and crystallization temperature in order to deduce the path of magmatic evolution prior to eruption. Additionally, uranium-lead dating on the same zircon crystals allows for a time-stamp of the evolutionary process. Within the Huckleberry Ridge Tuff, zircon analyses demonstrate that some of the crystal cargo was derived from previously erupted volcanic deposits, and the remaining crystals formed over a period of about 10,000 years. To complement the zircon findings, 40Ar/39Ar age data on sanidine crystals from the same rock show similar evidence for recycling of previously formed crystals, and provide an eruption age of 2.079 million years. The findings of this study show that, despite the large volume of magma (~2500 cubic kilometers), differentiation and cooling is geologically rapid, with most crystals forming several millennia prior to eruption.
740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy
Justin V. Strauss et al., Dept. of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. Published online 9 June 2014; http://dx.doi.org/10.1130/G35736.1.
Biostratigraphy, or the use of fossils to help constrain time in ancient sedimentary rocks, underpins the more recent geological time scale, but its application to pre-Ediacaran (> ~541 million years old) strata has remained limited because older fossil taxa commonly have poorly understood preservational biases and/or inadequate geological or geochronological context. Here, we report the discovery of abundant and well-preserved vase-shaped microfossils from a Neoproterozoic carbonate deposit in Yukon, Canada, that highlight the potential for biostratigraphic correlation of Proterozoic sedimentary successions. The fossiliferous horizon, dated here with Re-Os geochronology at 739.9 plus or minus 6.1 million years, shares multiple species-level taxa with a well-characterized assemblage from the Chuar Group, Grand Canyon, Arizona, dated with U-Pb on zircon from an interbedded tuff at 742 plus or minus 6 million years. The overlapping age and species assemblages from these two deposits suggests biostratigraphic utility, at least within Neoproterozoic basins of ancient North America, or Laurentia, and perhaps globally. The new Re-Os age also confirms the timing of a large negative carbonate carbon isotopic anomaly, which predates the onset of the Sturtian "Snowball Earth" glaciation by >15 million years. Together, these data provide global calibration of Neoproterozoic sedimentary, paleontological, and geochemical records.
Southward shift of the Intertropical Convergence Zone due to Northern Hemisphere cooling at the Oligocene-Miocene boundary
Kiseong Hyeong et al. (Boo-Keun Khim [corresponding]), Korea Institute of Ocean Science and Technology, 878 Haean-ro, Ansan 426-744, Republic of Korea (Khim: Dept. of Oceanography, Pusan National University, Busan 609-735, Republic of Korea). Published online 9 June 2014; http://dx.doi.org/10.1130/G35664.1.
The Mi-1 glaciation (approx. 23 million years ago), which marks the Oligocene–Miocene boundary, was an aberrant cooling event that led to a build-up of Antarctic ice sheet reaching the near-modern volume or larger from its ephemeral or partial existence. In contrast, Northern Hemisphere (NH) glaciation has not been considered as a consequence of the event due to lack of definitive evidence. Here, we investigated the inter-hemispheric temperature contrast during Mi-1, by tracing the movement of the tropical maximum rainfall belt (TMRB) at a site (10°31'N) in the East Pacific (IODP Site U1333), to understand NH cooling and possibility of NH glaciation. Our dust data indicate the southward displacement of the TMRB over Site U1333 during Mi-1 (~4°N at the Oligocene-Miocene boundary). The TMRB shifts toward the warmer hemisphere. Thus our results suggest that the cooling during Mi-1 was more significant in the NH than the Southern Hemisphere which underwent the sudden expansion of its continental ice sheets. The published data suggest two possible mechanisms for NH cooling during the brief time interval: the extensive growth of NH ice sheets and/or changes in the production of North Atlantic-origin deep water.
INFORMATION:
http://www.geosociety.org
Discovery of Earth's northernmost perennial spring
New Geology articles posted online ahead of print June 9, 2014
2014-06-16
ELSE PRESS RELEASES FROM THIS DATE:
Pathological gambling runs in families
2014-06-16
A study by University of Iowa researchers confirms that pathological gambling runs in families and shows that first-degree relatives of pathological gamblers are eight times more likely to develop this problem in their lifetime than relatives of people without pathological gambling.
"Our work clearly shows that pathological gambling runs in families at a rate higher than for many other behavioral and psychiatric disorders," says Donald W. Black, MD, professor of psychiatry in the UI Carver College of Medicine. "I think clinicians and health care providers should be alerted ...
Low dose of targeted drug might improve cancer-killing virus therapy
2014-06-16
COLUMBUS, Ohio – Giving low doses of a particular targeted agent with a cancer-killing virus might improve the effectiveness of the virus as a treatment for cancer, according to a study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).
Viruses that are designed to kill cancer cells – oncolytic viruses – have shown promise in clinical trials for the treatment of brain cancer and other solid tumors. This cell and animal study suggests that combining low ...
How our brains store recent memories, cell by single cell
2014-06-16
Confirming what neurocomputational theorists have long suspected, researchers at the Dignity Health Barrow Neurological Institute in Phoenix, Ariz. and University of California, San Diego School of Medicine report that the human brain locks down episodic memories in the hippocampus, committing each recollection to a distinct, distributed fraction of individual cells.
The findings, published in the June 16 Early Edition of PNAS, further illuminate the neural basis of human memory and may, ultimately, shed light on new treatments for diseases and conditions that adversely ...
Omega (ω)-3 inhibits blood vessel growth in a model of age-related macular degeneration in vivo
2014-06-16
Boston (June 16, 2014) – Age-related macular degeneration (AMD), which is characterized by choroidal neovascularization (CNV), or blood vessel growth, is the primary cause of blindness in elderly individuals of industrialized countries. The prevalence of the disease is projected to increase 50% by the year 2020. There is an urgent need for new pharmacological interventions for the treatment and prevention of AMD.
Researchers from Massachusetts Eye and Ear/Schepens Eye Research Institute, Harvard Medical School and other institutions have demonstrated for the first time ...
Caterpillars that eat multiple plant species are more susceptible to hungry birds
2014-06-16
Irvine, Calif. — For caterpillars, having a well-rounded diet can be fraught with peril.
UC Irvine and Wesleyan University biologists have learned that caterpillars that feed on one or two plant species are better able to hide from predatory birds than caterpillars that consume a wide variety of plants.
This is probably because the color patterns and hiding behaviors of the caterpillar "specialists" have evolved to allow them to blend into the background flora more effectively than caterpillars that eat many different plant species. Moving among these diverse plant ...
Hunt for extraterrestrial life gets massive methane boost
2014-06-16
A powerful new model to detect life on planets outside of our solar system, more accurately than ever before, has been developed by UCL (University College London) researchers.
The new model focuses on methane, the simplest organic molecule, widely acknowledged to be a sign of potential life.
Researchers from UCL and the University of New South Wales have developed a new spectrum for 'hot' methane which can be used to detect the molecule at temperatures above that of Earth, up to 1,500K/1220°C – something which was not possible before.
To find out what remote planets ...
Physician anesthesiologists identify 5 tests and procedures to avoid
2014-06-16
Proving that less really is more, five specific tests or procedures commonly performed in anesthesiology that may not be necessary and, in some cases should be avoided, will be published online June 16 in JAMA Internal Medicine. The "Top-five" list was created by the American Society of Anesthesiologists® (ASA®) for inclusion in the ABIM Foundation's Choosing Wisely® campaign.
"The Top-five list of activities to question in anesthesiology was developed in an effort to reduce unnecessary, costly procedures and improve patient care," said Onyi Onuoha, M.D., M.P.H., lead ...
Your genes affect your betting behavior
2014-06-16
Investors and gamblers take note: your betting decisions and strategy are determined, in part, by your genes.
University of California, Berkeley, and University of Illinois at Urbana-Champaign (UIUC) researchers have shown that betting decisions in a simple competitive game are influenced by the specific variants of dopamine-regulating genes in a person's brain.
Dopamine is a neurotransmitter – a chemical released by brain cells to signal other brain cells – that is a key part of the brain's reward and pleasure-seeking system. Dopamine deficiency leads to Parkinson's ...
When genes play games
2014-06-16
Berkeley — What do you get when you mix theorists in computer science with evolutionary biologists? You get an algorithm to explain sex.
It turns out that 155 years after Charles Darwin first published "On the Origin of Species," vexing questions remain about key aspects of evolution, such as how sexual recombination and natural selection produced the teeming diversity of life that exists today.
The answer could lie in the game that genes play during sexual recombination, and computer theorists at the University of California, Berkeley, have identified an algorithm ...
Quantum biology: Algae evolved to switch quantum coherence on and off
2014-06-16
A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis.
The function in the algae of this quantum effect, known as coherence, remains a mystery, but it is thought it could help them harvest energy from the sun much more efficiently.
Working out its role in a living organism could lead to technological advances, such as better organic solar cells and quantum-based electronic devices.
The research is published in the journal Proceedings ...
LAST 30 PRESS RELEASES:
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
[Press-News.org] Discovery of Earth's northernmost perennial springNew Geology articles posted online ahead of print June 9, 2014