PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A*Star scientists make breakthroughs in ovarian cancer research

A*Star scientists make breakthroughs in ovarian cancer research
2014-08-08
(Press-News.org) Scientists at A*STAR's Institute of Medical Biology (IMB) and the Bioinformatics Institute (BII) have found new clues to early detection and personalised treatment of ovarian cancer, currently one of the most difficult cancers to diagnose early due to the lack of symptoms that are unique to the illness.

There are three predominant cancers that affect women – breast, ovarian and womb cancer. Of the three, ovarian cancer is of the greatest concern as it is usually diagnosed only at an advanced stage due to the absence of clear early warning symptoms. Successful treatment is difficult at this late stage, resulting in high mortality rates. Ovarian cancer has increased in prevalence in Singapore as well as other developed countries recently. It is now the fifth most common cancer in Singapore amongst women, with about 280 cases diagnosed annually and 90 deaths per year .

Identifying Ovarian Cancer Earlier

IMB scientists have successfully identified a biomarker of ovarian stem cells, which may allow for earlier detection of ovarian cancer and thus allow treatment at an early stage of the illness.

The team has identified a molecule, known as Lgr5, on a subset of cells in the ovarian surface epithelium . Lgr5 has been previously used to identify stem cells in other tissues including the intestine and stomach, but this is the first time that scientists have successfully located this important biomarker in the ovary. In doing so, they have unearthed a new population of epithelial stem cells in the ovary which produce Lgr5 and control the development of the ovary. Using Lgr5 as a biomarker of ovarian stem cells, ovarian cancer can potentially be detected earlier, allowing for more effective treatment at an early stage of the illness (see Annex A). These findings were published online in Nature Cell Biology in July 2014.

Bioinformatics Analysis to Develop Personalised Treatment

Of the different types of ovarian cancers detected, high-grade serous ovarian carcinoma (HG-SOC) is the most prevalent of epithelial ovarian cancers . It has also proven to be one of the most lethal ovarian cancers, with only 30 per cent of such patients surviving more than five years after diagnosis . HG-SOC remains poorly understood, with a lack of biomarkers identified for clinical use, from diagnosis to prognosis of patient survival rates.

By applying bioinformatics analysis on big cancer genomics data , BII scientists were able to identify genes whose mutation status could be used for prognosis and development of personalized treatment for HG-SOC. The gene, Checkpoint Kinase 2 (CHEK2), has been identified as an effective prognostic marker of patient survival. HG-SOC patients with mutations in this gene succumbed to the disease within five years of diagnosis, possibly because CHEK2 mutations were associated with poor response to existing cancer therapies (see Annex B). These findings were published in Cell Cycle in July 2014. Mortality after diagnosis currently remains high, as patients receive similar treatment options of chemotherapy and radiotherapy despite the diverse nature of tumour cells within tumours and across different tumour samples. With these findings, personalised medicine for ovarian cancer could be developed, with targeted treatment that would be optimised for subgroups of patients.

Prof Sir David Lane, Chief Scientist, A*STAR, said, "These findings show how the various research institutes at A*STAR offer their expertise in developing new approaches to examine different aspects of the same disease that have not been successfully studied before, such as ovarian cancer. The diverse capabilities and knowledge of our scientists allows us to investigate diseases holistically, from diagnosis to treatment."

INFORMATION: Notes to Editor:

The research findings described in this media release can be found in: 1. the Nature Cell Biology Journal, under the title, "Lgr5 marks stem/progenitor cells in ovary and tubal epithelia" by Annie Ng1, Shawna Tan1, Gurmit Singh1, Pamela Rizk1, Yada Swathi1, Tuan Zea Tan2, Ruby Yun-Ju Huang2,3, Marc Leushacke1 and Nick Barker1,4,5,6

1A*STAR Institute of Medical Biology, Singapore 2Cancer Science Institute of Singapore, National University of Singapore, Singapore 3Department of Obstetrics & Gynaecology, National University Hospital, Singapore 4Centre for Regenerative Medicine, University of Edinburgh, UK 5Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

2. the journal Cell Cycle, under the title "Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germline mutation and non-CHEK2 somatic mutation gene signatures" by Ghim Siong Ow1, Anna V Ivshina1, Gloria Fuentes1,2, and Vladimir A Kuznetsov1,3,4.

1Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore; 2Centre for Life Science Technologies (CLST), RIKEN, Saitama, Japan; 3Division of Software & Information Systems, School of Computer Engineering, Nanyang Technological University, Singapore; 4School for Integrative Science and Engineering, National University of Singapore, Singapore

Full text of the paper in Cell Cycle can be accessed online from: https://www.landesbioscience.com/journals/cc/article/29271/

Enclosed: Annex A – A*STAR's IMB finds biomarker for early detection of ovarian cancer Annex B - A*STAR's BII uncovers potential for personalised treatment of major-type ovarian cancer

For media queries and clarifications, please contact:

Vithya Selvam (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6291
Email: vithya_selvam@a-star.edu.sg

Vanessa Loh (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6395
Email: vanessa_loh@a-star.edu.sg

About the Bioinformatics Institute (BII)

The Bioinformatics Institute (BII) is an institute of the Agency for Science, Technology and Research (A*STAR). BII was set up in July 2001 as part of the national initiative to foster and advance biomedical research and human capital for a vibrant knowledge-based Singapore. With a multi-disciplinary focus and collaborative outlook, BII recognises the need for depth and breadth in all its activities for building a thriving world-class biomedical research, graduate training and development hub in Singapore. In addition, BII is proactively involved in building a national resource centre in bioinformatics to meet the evolving needs of the scientific community in Singapore.

For more information on BII, please visit: http://www.bii.a-star.edu.sg

About the Institute of Medical Biology (IMB) IMB is one of the Biomedical Sciences Institutes of the Agency for Science, Technology and Research (A*STAR). It was formed in 2007, with a mission to study mechanisms of human disease in order to discover new and effective therapeutic strategies for improved quality of life. IMB has 20 research teams working in three primary focus areas – skin biology, genetic disease and stem cells. The teams work closely with clinical collaborators as well as industry partners, to target the challenging interface between basic science and clinical medicine. IMB's strategic research topics are targeted at translational research to understand the mechanisms of human disease so as to identify new strategies for disease amelioration, cure and eradication and to improve health and wellbeing. Since 2011, IMB has also hosted the inter-research institute Skin Biology Cluster platform, and leads major strategic funding programs in rare genetic diseases and in skin biology. In 2013 IMB became a founding institute of the Skin Research Institute of Singapore. For more information on IMB, please visit http://www.imb.a-star.edu.sg.

About the Agency for Science, Technology and Research (A*STAR) The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore's manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR's research entities as well as a growing number of corporate laboratories.

For more information on A*STAR, please visit http://www.a-star.edu.sg

ANNEX A – A*STAR'S IMB FINDS BIOMARKER FOR POTENTIAL EARLY DETECTION OF OVARIAN CANCER

Scientists at A*STAR's IMB have identified a biomarker, Lgr5, of ovarian stem cells. Using this biomarker, ovarian cancer could potentially be detected earlier, allowing for more effective treatment at an early stage of the illness.

Stem cells exist in many tissues, and are responsible for ensuring healthy tissue function, by giving rise to new cells to replenish those lost during normal wear and tear. However, the existence of stem cells and their identity in the ovary has remained elusive. The ovary is covered by a single layer of epithelial cells (Figure 1) and much of the research in the field been dedicated to understand their stem cell biology, as the majority of human ovarian cancers are believed by scientists to originate from the carcinogenic transformation of a single ovary epithelial cell.

A*STAR's IMB has now determined that Lgr5-expressing ovary epithelial cells have a long lifespan, and that they continuously self-renew by producing new cells to replace those lost over the reproductive lifetime of the organism. The team is now studying the mechanisms of how Lgr5-expressing stem cells regenerate in normal tissue. The regenerative ability of Lgr5-expressing stem cells makes them potentially useful for therapies that require tissue repair or replacement, such as through gene therapy to tackle ovary defects.

By using Lgr-5 as a biomarker to isolate and purify normal ovary stem cells and ovarian cancer stem cells, scientists can now compare normal and cancerous cells to identify differences between them. Such differences may then represent new therapeutic targets for ovarian cancer treatment.

Prof Nicholas Barker, Senior Principal Investigator of the project, said, "Researchers have been intensively looking for markers of ovary stem cells for decades, and the identification of Lgr5 as a specific marker of these cells represents a major breakthrough in this field. We can now rigorously investigate whether these stem cells are the origin of human ovarian cancer, and if so, how to target and eradicate them. This finding has paved the way for the development of cancer therapeutics in the future."

Prof Birgit Lane, Executive Director of IMB, said, "We at IMB are excited by these findings as they may open up new possibilities for ovarian cancer treatment. This beautiful and meticulous study has led to a breakthrough discovery in a very challenging field."

ANNEX B – FINDINGS AT A*STAR'S BIOINFORMATICS INSTITUTE HOLD POTENTIAL FOR PERSONALISED TREATMENT OF MAJOR TYPE OVARIAN CANCER

Scientists at A*STAR's Bioinformatics Institute have identified genes whose mutation status could be used for prognosis and development of personalized treatment for high-grade serous ovarian carcinoma (HG-SOC), a major type of ovarian cancer.

Besides identification of CHEK2 as a biomarker for poor prognosis, the team of scientists also identified a prognostic signature comprising 21 genes that could be used to stratify patients diagnosed with HG-SOC into subgroups with high- or low- risk of mortality within five years of diagnosis. Patients identified as high-risk had a five-year survival rate of 6%, and appeared to be twice as likely to exhibit resistance to therapy in contrast to those in the low-risk group. Besides determining the effectiveness of treatments, this prognostic signature would allow patients with poor prognosis to be identified even in the absence of mutations in CHEK2 by determining the mutational status of the other 20 genes in the profile.

These findings advance understanding of HG-SOC and could improve prediction and clinical management of this complex disease. The team's findings could also lead to development of new diagnostic or prognostic tests for women with inherited risk of ovarian cancer, or those whose genes contain mutations associated with poor prognosis and drug resistance.

Dr Vladimir Kuznetsov, Head of BII's Research Division and Senior Principal Investigator who led the study, said "Mutations are genetic events that initiate and drive cancer. We hope to continue our success in using these rare mutations and analysis of big data to address the challenges of screening, diagnosis, prognosis and treatment prediction of various diseases, including HG-SOC."

Dr Frank Eisenhaber, Executive Director of BII, said, "These findings demonstrate the importance of bioinformatics and the use of statistical models and computational genomics for the analysis of big biomedical data. These tools allow us to stratify patients into relevant subgroups and open avenues for development of diagnostic and prognostic kits for ovarian cancer, providing great promise for the future of personalised medicine for cancer."

BII will now further develop its study, having established research collaborations with clinical doctors and researchers locally. The group will continue its focus on developing and validating several next-generation biomarkers for ovarian cancer, using computational and experimental methods.

[Attachments] See images for this press release:
A*Star scientists make breakthroughs in ovarian cancer research A*Star scientists make breakthroughs in ovarian cancer research 2

ELSE PRESS RELEASES FROM THIS DATE:

Study: Few juvenile suspects exercise constitutional rights during interrogations

2014-08-08
WASHINGTON –- Even when not under arrest, juvenile suspects being interrogated for a crime may be strikingly unaware of their constitutional rights and confess without legal counsel or even a parent present, according to research presented at the American Psychological Association's 122nd Annual Convention. An analysis of 57 videotaped juvenile interrogations at 17 police departments around the country revealed none of the suspects, who ranged in age from 13 to 17, had an attorney present while they were questioned, according to Hayley Cleary, PhD, of Virginia Commonwealth ...

Parents part of problem in distracted teen driving, study finds

2014-08-08
WASHINGTON –- Parents play a direct role in distracted teen driving, with more than half of teens talking on cellphones with their mother or father while driving, according to new research presented at the American Psychological Association's 122nd Annual Convention. Researchers interviewed or surveyed more than 400 teen drivers, ages 15 to 18, from 31 states to find out why they continue to talk and text behind the wheel, despite warnings about the serious hazards of distracted driving. "Teens said parents expect to be able to reach them, that parents get mad if they ...

Stem cells show promise for stroke in pilot study

2014-08-08
A stroke therapy using stem cells extracted from patients' bone marrow has shown promising results in the first trial of its kind in humans. Five patients received the treatment in a pilot study conducted by doctors at Imperial College Healthcare NHS Trust and scientists at Imperial College London. The therapy was found to be safe, and all the patients showed improvements in clinical measures of disability. The findings are published in the journal Stem Cells Translational Medicine. It is the first UK human trial of a stem cell treatment for acute stroke to be published. The ...

Scientists enhance synthesis of chromium dioxide (100) epitaxial thin film growth

Scientists enhance synthesis of chromium dioxide (100) epitaxial thin film growth
2014-08-08
Half-metallic ferromagnet CrO2 has attracted much attention not only because of its fundamental physics related with high spin polarization but also because of its possible applications in the emerging area of spintronics. In these applications, synthesis of CrO2 films is of fundamental importance, primarily because of the difficulty in its synthesis, as it is not known to form under ambient pressures in a pure form. Extensive efforts have been made to grow high quality CrO2 films, but the growth technology still deserves research. The high quality CrO2 film on the ...

Disney Research software systems add motion to physical characters

2014-08-08
New 3D printing techniques have made it possible for just about anybody to fabricate fanciful plastic characters and sculptures, two new computational design methods developed by Disney Research Zurich are making it possible for even casual users to bring these creations to life by adding mechanical motion. The methods apply to two specific types of characters – planar mechanical characters that are similar to shadow puppets, and linkage-based characters formed by networks of rigid links and hinged joints. In either case, the researchers have developed tools that lead ...

Disney Research method automatically edits footage from cameras into coherent videos

2014-08-08
Video cameras that people wear to record daily activities are creating a novel form of creative and informative media. But this footage also poses a challenge: how to expeditiously edit hours of raw video into something watchable. One solution, according to Disney researchers, is to automate the editing process by leveraging the first-person viewpoints of multiple cameras to find the areas of greatest interest in the scene. The method they developed can automatically combine footage of a single event shot by several such "social cameras" into a coherent, condensed video. ...

Living organisms in oil

2014-08-08
Oil might not, at first sight, seem like an inhabited terrain. Within the oil, however, are tiny, suspended water droplets. "Inside them we found complex microbial communities, which play an active part in oil degradation in situ," says first author Prof. Rainer Meckenstock from the Helmholtz Zentrum München (HMGU). Previously it was assumed that microbial oil degradation only occurred at the oil-water interface. The team headed by Prof. Meckenstock from the Institute of Groundwater Ecology and the Department of Biogeochemistry at HMGU along with international colleagues ...

Disney Research's interactive method synchronizes multiple videos

2014-08-08
Disney Research Zurich has developed a new tool to help video editors synchronize multiple video clips based on the visual content of the videos, rather than relying on timecodes or other external markers. Current editing tools include a "snapping" interface that aligns video clips based on start-and-end times; by contrast, Disney Research's VideoSnapping method is based on an analysis of the content of the video. This makes it easier to synchronize multiple clips without such cues as global timecodes or audio, and even when clips are shot at different trajectories and ...

Which Structure has optimal resistive switching characteristics?

Which Structure has optimal resistive switching characteristics?
2014-08-08
Resistance switching of random access memory has been widely explored due to its potential for replacement of flash memory in the next-generation nonvolatile memory applications. One of the problems with resistive switching materials is the variations of switching parameters, which will deteriorate the device endurance. How do we solve this problem? Many methods have been tried to improve the resistive switching performances, such as doping in the insulator film, using appropriate electrodes and inserting interlayer between the electrode and the insulator ...

Work-related stress is a risk factor for type 2 diabetes

2014-08-08
Workplace stress can have a range of adverse effects on health with an increased risk of cardio-vascular diseases in the first line. However, to date, convincing evidence for a strong association between work stress and incident Type 2 diabetes mellitus is missing. Risk of diabetes about 45 percent higher As the team of scientists headed by Dr. Cornelia Huth and Prof. Karl-Heinz Ladwig has now discovered that individuals who are under a high level of pressure at work and at the same time perceive little control over the activities they perform face an about 45 percent ...

LAST 30 PRESS RELEASES:

Proactively screening diabetics for heart disease does not improve long-term mortality rates or reduce future cardiac events, new study finds

New model can help understand coexistence in nature

National Poll: Some parents need support managing children's anger

Political shadows cast by the Antarctic curtain

Scientists lead study on ‘spray on, wash off’ bandages for painful EB condition

A new discovery about pain signalling may contribute to better treatment of chronic pain

Migrating birds have stowaway passengers: invasive ticks could spread novel diseases around the world

Diabetes drug shows promise in protecting kidneys

Updated model reduces liver transplant disparities for women

Risk of internal bleeding doubles when people on anticoagulants take NSAID painkiller

‘Teen-friendly’ mindfulness therapy aims to help combat depression among teenagers

Innovative risk score accurately calculates which kidney transplant candidates are also at risk for heart attack or stroke, new study finds

Kidney outcomes in transthyretin amyloid cardiomyopathy

Partial cardiac denervation to prevent postoperative atrial fibrillation after coronary artery bypass grafting

Finerenone in women and men with heart failure with mildly reduced or preserved ejection fraction

Finerenone, serum potassium, and clinical outcomes in heart failure with mildly reduced or preserved ejection fraction

Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

[Press-News.org] A*Star scientists make breakthroughs in ovarian cancer research