(Press-News.org) An international research team has identified gene mutations causing severe, difficult-to-treat forms of childhood epilepsy. Many of the mutations disrupt functioning in the synapse, the highly dynamic junction at which nerve cells communicate with one another.
"This research represents a paradigm shift in epilepsy research, giving us a new target on which to focus treatment strategies," said pediatric neurologist Dennis Dlugos, M.D., director of the Pediatric Regional Epilepsy Program at The Children's Hospital of Philadelphia, and a study co-author. "There is tremendous potential for new drug development and personalized treatment strategies, which is our task for the years to come."
Multiple researchers from the U.S. and Europe performed the research, the largest collaborative study to date focused on the genetic roots of severe epilepsies. The scientists reported their results online today in the American Journal of Human Genetics (epub ahead of print).
Two international research consortia collaborated on the study—the Epi4K/EPGP Consortium, funded by the National Institute of Neurological Disorders and Stroke (NINDS) and the European EuroEPINOMICS consortium. The genetic analysis was performed at the NINDS-funded Epi4K Sequencing, Biostatistics, and Bioinformatics Core at Duke University, led by Drs. David Goldstein, Erin Heinzen and Andrew Allen.
The current study added to the list of gene mutations previously reported to be associated with these severe epilepsy syndromes, called epileptic encephalopathies. The researchers sequenced the exomes (those portions of DNA that code for proteins) of 356 patients with severe childhood epilepsies, as well as their parents. The scientists looked for "de novo" mutations—those that arose in affected children, but not in their parents. In all, they identified 429 such de novo mutations.
In 12 percent of the children, these mutations were considered to unequivocally cause the child's epilepsy. In addition to several known genes for childhood epilepsies, the study team found strong evidence for additional novel genes, many of which are involved in the function of the synapse.
Epilepsies are amongst the most common disorders of the central nervous system, affecting up to 3 million patients in the U.S. Up to one third of all epilepsies are resistant to treatment with antiepileptic medication and may be associated with other disabilities such as intellectual impairment and autism. Severe epilepsies are particularly devastating in children. In many patients with severe epilepsies, no cause for the seizures can be identified, but there is increasing evidence that genetic factors may play a causal role.
The research teams used a method called family-based exome sequencing, which looks at the part of the human genome that carries the blueprints for proteins. When comparing the sequence information in children with epilepsy with that of their parents, the researchers were able to identify the de novo changes that arose in the genomes of the affected children. While de novo changes are increasingly recognized as the genetic cause for severe seizure disorders, not all de novo changes are necessarily disease-causing.
"Everybody has one or two de novo mutations and it is our task to find those changes that cause disease," said co-author Ingo Helbig, M.D., now at The Children's Hospital of Philadelphia. "We pulled out those genes that have more mutations in patients with epilepsy than you would expect by chance. These genes will hopefully tell us a bit more about the underlying disease mechanisms and how we can address them with new treatments." As a member of the European EuroEPINOMICS consortium, Helbig was a co-initiator of the transatlantic collaboration that conducted the study. Helbig is also a member of the Genetics Commission of the International League Against Epilepsy (ILAE).
The most surprising finding in the study by the international research group is a gene called DNM1, which was found to be mutated in five patients. The gene carries the code for dynamin-1, a structural protein that plays a role in shuttling small vesicles between the body of the neuron and the synapse. These vesicles are structures that contain neurotransmitters, chemical signals crucial to communication between nerve cells. When the researchers looked on a network level, they found that many of the genes that were found to be mutated in patients had a clear connection with the function of the synapse.
This research finding, says Dlugos, provides important information about the functional roles of the genes that were identified. "We knew that synaptic genes were important but not to this extent," he added.
A spokesperson for Citizens United for Research in Epilepsy (CURE), a non-profit organization dedicated to finding a cure for epilepsy and increasing awareness of the disease, applauded this study. Dr. Tracy Dixon-Salazar, Associate Research Director at CURE and mother of a child with severe genetic epilepsy, added, "It is exciting to see the big consortia put the genomic data of almost 400 patients together. This clearly highlights that by working together we can find new genes faster, helping us to explain what causes this often devastating disease in children."
INFORMATION:
Funders of this study included the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (grants NS053998, NS077364, NS077274, NS077303, and NS077276), The Andrew's Foundation, Finding a Cure for Epilepsy and Seizures, the Richard Thalheimer Philanthropic Fund and the European Science Foundation. In addition to his CHOP position, Dr. Dlugos is on the faculty of the Perelman School of Medicine at the University of Pennsylvania.
Dr. Helbig has an additional summary of this research on "Beyond the Ion Channel," the genetics blog of the International League Against Epilepsy: http://channelopathist.net
"De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies," American Journal of Human Genetics, published online Sept. 25, 2014, in Oct. 2, 2014 print issue. http://doi.org/10.1016/j.ajhg.2014.08.013
About The Children's Hospital of Philadelphia:
The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 535-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.
Large study pinpoints synapse genes with major roles in severe childhood epilepsies
CHOP scientists help lead research, which may suggest new targets for more effective treatments
2014-09-25
ELSE PRESS RELEASES FROM THIS DATE:
Protein controlling gut's protective force field identified
2014-09-25
Scientists have identified a protein in the human intestine that helps to protect against attack from opportunistic bacteria that strike when our defences are down. The protein receptor is activated during illness, producing a force field on the gut's surface made of a sugary substance that encourages the growth of protective bacteria.
Scientists deleted the IL-22RA1 gene that produces the receptor protein from the mouse genome. In the absence of this gene, which is associated with inflammatory bowel disease (IBD) in humans, the mice were found to be more susceptible ...
NYU Langone scientists identify key factor that maintains stem cell identity
2014-09-25
NEW YORK, September 25, 2014— A protein implicated in several cancers appears to play a pivotal role in keeping stem cells in an immature "pluripotent" state, according to a new study by NYU Langone Medical Center scientists. The study is published online today in Cell Reports.
Stem cells are the perpetual adolescents of the cellular world, uncommitted to any cell fate. In principle, they can be programmed to differentiate into any mature cell type, holding the promise of regenerating tissues and organs. A fuller understanding of their biology, however, is needed. ...
Surprising diversity of antibody family provides clues for HIV vaccine design
2014-09-25
LA JOLLA, CA—September 25, 2014—Scientists at The Scripps Research Institute (TSRI) have described how a single family of antibodies that broadly neutralizes different strains of HIV has evolved remarkably diverse structures to attack a vulnerable site on the virus. The findings provide clues for the design of a future HIV vaccine.
"In a sense, this antibody family takes more than one shot on goal in order to hit divergent forms of HIV," said Ian A. Wilson, the Hansen Professor of Structural Biology and member of the Skaggs Institute for Chemical Biology at TSRI.
"The ...
New genes identified with key role in the development of severe childhood epilepsies
2014-09-25
In the largest collaborative study so far, an international team of researchers, including scientists from VIB and Antwerp University identified novel causes for severe childhood epilepsies. The researchers analyzed the genetic information of 356 patients and their parents. In their analysis, the research teams looked for genes that had acquired new mutations in the children with severe epilepsies when compared to the DNA of the parents. In total, they identified 429 new mutations and in 12% of children, these mutations were considered unequivocally causative for the patient's ...
How the ends of chromosomes are maintained for cancer cell immortality
2014-09-25
VIDEO:
The perpetual proliferation of cancer cells requires a means to maintain telomere length. Alternative lengthening of telomeres (ALT) is a poorly understood mechanism of telomere maintenance that is utilized by...
Click here for more information.
PHILADELPHIA – Maintaining the ends of chromosomes, called telomeres, is a requisite feature of cells that are able to continuously divide and also a hallmark of human cancer. "Telomeres are much like the plastic cap on the ends ...
USC researchers discover dual purpose of cancer drug in regulating expression of genes
2014-09-25
LOS ANGELES — Keck Medicine of USC scientists have discovered new clues about a drug instrumental in treating a certain blood cancer that may provide important targets for researchers searching for cures.
The team investigated whether demethylation of gene bodies induced by the drug 5-Aza-CdR (decitabine), which is used to treat pre-leukemia, could alter gene expression and possibly be a therapeutic target in cancer.
"When we put the drug in cancer cells, we found it not only reactivated some tumor suppressor genes, but it down-regulated the overexpressed oncogene ...
NASA-NOAA's Suomi NPP satellite sees Tropical Storm Kammuri coming together
2014-09-25
When NASA-NOAA Suomi NPP satellite passed over Tropical Storm Kammuri the VIIRS instrument aboard took a visible picture of the storm that showed bands of thunderstorms wrapped around its center. The storm appears to be coming together as circulation improves and bands of thunderstorms have been wrapping into the low-level center of circulation.
NASA-NOAA's Suomi NPP satellite passed over Tropical Storm Kammuri on Sept. 25 at 03:13 UTC (Sept. 24 at 11:13 p.m. EDT) and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard captured a visible picture of ...
Researchers engineer 'Cas9' animal models to study disease and inform drug discovery
2014-09-25
Cambridge, MA, September 25, 2014 — Researchers from the Broad Institute and Massachusetts Institute of Technology have created a new mouse model to simplify application of the CRISPR-Cas9 system for in vivo genome editing experiments. The researchers successfully used the new "Cas9 mouse" model to edit multiple genes in a variety of cell types, and to model lung adenocarcinoma, one of the most lethal human cancers. The mouse has already been made available to the scientific community and is being used by researchers at more than a dozen institutions. A paper describing ...
Satellite catches an oval-shaped Tropical Storm Rachel
2014-09-25
NOAA's GOES-West satellite spotted the eighteenth tropical depression of the Eastern Pacific grow into a tropical storm that was renamed Rachel today, Sept. 25, 2014. Wind shear is affecting the tropical storm, however, so it doesn't have a rounded appearance on satellite imagery.
Tropical Depression 18-E formed on Wednesday, Sept. 24 around 11 a.m. EDT about 285 miles (460 km) south-southwest of Manzanillo, Mexico. Manzanillo is a city in the Manzanillo municipality of the Mexican state of Colima on the country's west coast.
In an infrared image from NOAA's GOES-West ...
Can genetic engineering help food crops better tolerate drought?
2014-09-25
New Rochelle, NY, September 25, 2014—The staggering growth rate of the global population demands innovative and sustainable solutions to increase food production by as much as 70-100% in the next few decades. In light of environmental changes, more drought-tolerant food crops are essential. The latest technological advances and future directions in regulating genes involved in stress tolerance in crops is presented in a Review article in OMICS: A Journal of Integrative Biology, the peer-reviewed interdisciplinary journal published by Mary Ann Liebert, Inc., publishers. ...
LAST 30 PRESS RELEASES:
Populations overheat as major cities fail canopy goals: new research
By exerting “crowd control” over mouse cells, scientists make progress towards engineering tissues
First American Gastroenterological Association living guideline for moderate-to-severe ulcerative colitis
Labeling cell particles with barcodes
Groundwater pumping drives rapid sinking in California
Neuroscientists discover how the brain slows anxious breathing
New ion speed record holds potential for faster battery charging, biosensing
Haut.AI explores the potential of AI-enhanced fluorescence photography for non-invasive skin diagnostics
7-year study reveals plastic fragments from all over the globe are rising rapidly in the North Pacific Garbage Patch
New theory reveals the shape of a single photon
We could soon use AI to detect brain tumors
TAMEST recognizes Lyda Hill and Lyda Hill Philanthropies with Kay Bailey Hutchison Distinguished Service Award
Establishment of an immortalized red river hog blood-derived macrophage cell line
Neural networks: You might not need to buy every ticket to win the lottery
Healthy New Town: Revitalizing neighborhoods in the wake of aging populations
High exposure to everyday chemicals linked to asthma risk in children
How can brands address growing consumer scepticism?
New paradigm of quantum information technology revealed through light-matter interaction!
MSU researchers find trees acclimate to changing temperatures
World's first visual grading system developed to combat microplastic fashion pollution
Teenage truancy rates rise in English-speaking countries
Cholesterol is not the only lipid involved in trans fat-driven cardiovascular disease
Study: How can low-dose ketamine, a ‘lifesaving’ drug for major depression, alleviate symptoms within hours? UB research reveals how
New nasal vaccine shows promise in curbing whooping cough spread
Smarter blood tests from MSU researchers deliver faster diagnoses, improved outcomes
Q&A: A new medical AI model can help spot systemic disease by looking at a range of image types
For low-risk pregnancies, planned home births just as safe as birth center births, study shows
Leaner large language models could enable efficient local use on phones and laptops
‘Map of Life’ team wins $2 million prize for innovative rainforest tracking
Rise in pancreatic cancer cases among young adults may be overdiagnosis
[Press-News.org] Large study pinpoints synapse genes with major roles in severe childhood epilepsiesCHOP scientists help lead research, which may suggest new targets for more effective treatments