(Press-News.org) BOSTON –– In an advance against the problem of cancer metastasis, Dana-Farber Cancer Institute scientists have shown that a specially developed compound can impede multiple myeloma from spreading to the bones in mice. The findings, published in the Sept. 25 issue of Cell Reports, suggest the technique can protect human patients, as well, from one of the most deadly aspects of cancer.
The research involves a new approach to the challenge of cancer metastasis, the process by which tumors spread to and colonize distant parts of the body. Whereas research has traditionally focused on cancer cells themselves, scientists are increasingly studying the interactions between tumor cells and the tissues around them – the so-called microenvironment. In the current study, researchers explored why errant myeloma cells often settle in bones, and whether the bones could be made less hospitable to such malignant homesteading.
"While cure and survival rates have increased for many types of cancers in recent decades, most of these gains have been made in patients with primary cancers – cancers that have not spread beyond their initial site," said the study's senior author, Irene Ghobrial, MD, of Dana-Farber's Center for Hematologic Oncology. "Metastasis remains one of the most formidable complications we face as cancer researchers and physicians. Improvements in the treatment of metastatic cancers have, for the most part, not been nearly as dramatic as in primary disease."
The current study focused on multiple myeloma because it is metastatic by nature. Myeloma cells originate in the bone marrow, depart for the bloodstream, and eventually return to the bones, where they form numerous colonies – hence the name multiple myeloma.
Ghobrial and her team knew that a substance called stromal cell-derived factor-1 (SDF-1) is a kind of protein pied piper, attracting certain cells to new locations within the bone marrow. They found that mice with advanced stages of myeloma had sharply higher levels of SDF-1 at the sites in the bones where metastasis had occurred.
"We reasoned that by neutralizing SDF-1, we could change the bone marrow environment to make it less receptive for multiple myeloma cells, reduce myeloma cells' affinity for the marrow, and thereby inhibit the progression of the disease," said Aldo Roccaro, MD, PhD, the study's co-first author with Dana-Farber colleague Antonio Sacco, RN.
Working with the German biotechnology company NOXXON Pharma, the researchers tested a substance – called olaptesed pegol (a PEGylated mirror-image L-oligonucleotide) – that binds tightly and specifically to SDF-1. Laboratory experiments suggested that olaptesed pegol blocks the activity of SDF-1, making it a less alluring signal for tumor cells. In mice, the researchers found that olaptesed pegol alters the bone marrow, rendering it uninviting to myeloma cells. The result was a slowing of the disease progression and a prolonged survival of the animals.
It isn't completely clear what becomes of the blood-borne myeloma cells that are prevented from metastasizing to the bones, the researchers said. "We know that myeloma cells can't survive for long if they're circulating in the blood and can't adhere to other tissue," Ghobrial remarked. "We saw no evidence that they had metastasized and begun to grow in other tissue, either.
"Our findings clearly document a therapeutic effect of olaptesed pegol in a mouse model of advanced myeloma," Ghobrial continued. "It is now being tested in a clinical trial of multiple myeloma patients, with more trials to come."
INFORMATION:
The co-authors of the study are: Michele Moschetta, MD, Yuji Mishima, PhD, Patricia Maiso, PhD, and Michaela Reagan, PhD, of Dana-Farber; Werner Purschke, PhD, Klaus Buchner, PhD, Christian Maasch, PhD, Dirk Zboralski, PhD, Stefan Zöllner, PhD, Stefan Vonhoff, PhD, Dirk Eulberg, PhD, Anna Kruschinski, PhD, Axel Vater, PhD, and Sven Klussmann, PhD, of NOXXON Pharma AG, of Berlin, Germany; Silvia Lonardi, MD, Marco Ungari, MD, and Fabio Facchetti, MD, of the University of Brescia Medical School, in Brescia, Italy; and Giuseppe Rossi, MD, of Spedali Civili di Brescia, in Brescia, Italy.
This research was supported by the National Cancer Institute (RO1CA154648, RO1CA181683).
Contacts:
Teresa Herbert or Rob Levy, Dana-Farber Cancer Institute, Teresa_Herbert@dfci.harvard.edu; Office: (617) 632-4090
About Dana-Farber Cancer Institute
Dana-Farber Cancer Institute, a principal teaching affiliate of Harvard Medical School, is world renowned for its leadership in adult and pediatric cancer treatment and research. Designated as a comprehensive cancer center by the National Cancer Institute (NCI), it is one of the largest recipients among independent hospitals of NCI and National Institutes of Health grant funding. For more information, go to http://www.dana-farber.org.
Novel compound prevents metastasis of multiple myeloma in mouse studies
2014-09-25
ELSE PRESS RELEASES FROM THIS DATE:
Dinosaur family tree gives fresh insight into rapid rise of birds
2014-09-25
The most comprehensive family tree of meat-eating dinosaurs ever created is enabling scientists to discover key details of how birds evolved from them.
The study has shown that the familiar anatomical features of birds – such as feathers, wings and wishbones – all first evolved piecemeal in their dinosaur ancestors over tens of millions of years.
However, once a fully functioning bird body shape was complete, an evolutionary explosion began, causing a rapid increase in the rate at which birds evolved. This led eventually to the thousands of avian species that we know ...
Strategic or random? How the brain chooses
2014-09-25
Many of the choices we make are informed by experiences we've had in the past. But occasionally we're better off abandoning those lessons and exploring a new situation unfettered by past experiences. Scientists at the Howard Hughes Medical Institute's Janelia Research Campus have shown that the brain can temporarily disconnect information about past experience from decision-making circuits, thereby triggering random behavior.
In the study, rats playing a game for a food reward usually acted strategically, but switched to random behavior when they confronted a particularly ...
New protein players found in key disease-related metabolic pathway
2014-09-25
CAMBRIDGE, Mass. (September 25, 2014) – To coordinate their size and growth with current environmental conditions, cells rely on the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which senses cellular stresses, growth factors, and the availability of nutrients, such as amino acids and glucose.
For years, Whitehead Institute Member David Sabatini and his lab have been teasing apart the numerous proteins involved in this vital metabolic pathway, in part because mTORC1 function is known to be deregulated in a variety of diseases, including diabetes, epilepsy, ...
Large study pinpoints synapse genes with major roles in severe childhood epilepsies
2014-09-25
An international research team has identified gene mutations causing severe, difficult-to-treat forms of childhood epilepsy. Many of the mutations disrupt functioning in the synapse, the highly dynamic junction at which nerve cells communicate with one another.
"This research represents a paradigm shift in epilepsy research, giving us a new target on which to focus treatment strategies," said pediatric neurologist Dennis Dlugos, M.D., director of the Pediatric Regional Epilepsy Program at The Children's Hospital of Philadelphia, and a study co-author. "There is tremendous ...
Protein controlling gut's protective force field identified
2014-09-25
Scientists have identified a protein in the human intestine that helps to protect against attack from opportunistic bacteria that strike when our defences are down. The protein receptor is activated during illness, producing a force field on the gut's surface made of a sugary substance that encourages the growth of protective bacteria.
Scientists deleted the IL-22RA1 gene that produces the receptor protein from the mouse genome. In the absence of this gene, which is associated with inflammatory bowel disease (IBD) in humans, the mice were found to be more susceptible ...
NYU Langone scientists identify key factor that maintains stem cell identity
2014-09-25
NEW YORK, September 25, 2014— A protein implicated in several cancers appears to play a pivotal role in keeping stem cells in an immature "pluripotent" state, according to a new study by NYU Langone Medical Center scientists. The study is published online today in Cell Reports.
Stem cells are the perpetual adolescents of the cellular world, uncommitted to any cell fate. In principle, they can be programmed to differentiate into any mature cell type, holding the promise of regenerating tissues and organs. A fuller understanding of their biology, however, is needed. ...
Surprising diversity of antibody family provides clues for HIV vaccine design
2014-09-25
LA JOLLA, CA—September 25, 2014—Scientists at The Scripps Research Institute (TSRI) have described how a single family of antibodies that broadly neutralizes different strains of HIV has evolved remarkably diverse structures to attack a vulnerable site on the virus. The findings provide clues for the design of a future HIV vaccine.
"In a sense, this antibody family takes more than one shot on goal in order to hit divergent forms of HIV," said Ian A. Wilson, the Hansen Professor of Structural Biology and member of the Skaggs Institute for Chemical Biology at TSRI.
"The ...
New genes identified with key role in the development of severe childhood epilepsies
2014-09-25
In the largest collaborative study so far, an international team of researchers, including scientists from VIB and Antwerp University identified novel causes for severe childhood epilepsies. The researchers analyzed the genetic information of 356 patients and their parents. In their analysis, the research teams looked for genes that had acquired new mutations in the children with severe epilepsies when compared to the DNA of the parents. In total, they identified 429 new mutations and in 12% of children, these mutations were considered unequivocally causative for the patient's ...
How the ends of chromosomes are maintained for cancer cell immortality
2014-09-25
VIDEO:
The perpetual proliferation of cancer cells requires a means to maintain telomere length. Alternative lengthening of telomeres (ALT) is a poorly understood mechanism of telomere maintenance that is utilized by...
Click here for more information.
PHILADELPHIA – Maintaining the ends of chromosomes, called telomeres, is a requisite feature of cells that are able to continuously divide and also a hallmark of human cancer. "Telomeres are much like the plastic cap on the ends ...
USC researchers discover dual purpose of cancer drug in regulating expression of genes
2014-09-25
LOS ANGELES — Keck Medicine of USC scientists have discovered new clues about a drug instrumental in treating a certain blood cancer that may provide important targets for researchers searching for cures.
The team investigated whether demethylation of gene bodies induced by the drug 5-Aza-CdR (decitabine), which is used to treat pre-leukemia, could alter gene expression and possibly be a therapeutic target in cancer.
"When we put the drug in cancer cells, we found it not only reactivated some tumor suppressor genes, but it down-regulated the overexpressed oncogene ...