(Press-News.org) When blood vessels are damaged through surgery, it can trigger an endless cycle of scarring and repair.
"Scar tissue will always form inside the blood vessel and, in many cases, eventually block blood flow," said Guillermo Ameer, professor of biomedical engineering at Northwestern University's McCormick School of Engineering. "Then surgeons have to go back in, eliminate the obstruction, or put in a new graft or stent to restore blood flow. In the case of a prosthetic vascular graft used for bypass surgery, it will scar again and ultimately fail."
Ameer, who is also professor of surgery at the Feinberg School of Medicine, has developed a new material that, when applied to damaged blood vessels, can prevent scarring and stop the cycle before it begins.
The soft, porous, and thin elastic material contains an acid form of vitamin A, called a retinoid, which is produced by the body to help cells develop and stay healthy. Synthetic retinoids have been formulated and traditionally used to treat acne and some types of cancer. Unfortunately, the oral dose needed to positively affect vessel healing and prevent scarring could never be administered to humans as it is toxic in very high doses.
"We solved this problem by using engineering and biomaterial science concepts," Ameer said. "We incorporated the retinoid into a biodegradable membrane that can be handled and implanted by a surgeon. That way, we can target the blood vessel and safely get the effect we want."
The research is described in the paper "Periadventitial atRA citrate-based polyester membranes reduce neointimal hyperplasia and restenosis after carotid injury in rats," which was published in the September 19 issue of the American Journal of Physiology: Heart and Circulatory Physiology. Elaine Gregory, research associate in surgery, and Antonio Webb, a former postdoctoral researcher in Ameer's lab and current professor at the University of Florida, were the paper's first authors.
Ameer started with an inherently antioxidant, citrate-based polymer previously developed in his laboratory. Then he added the all-trans retinoic acid (atRA), a vitamin A derivative. Ameer's longtime collaborator and co-senior author of the paper, Melina Kibbe, the Edward G. Elcock Professor of Surgical Research at Feinberg, evaluated the membrane in an animal model. When wrapped around the outside of a damaged blood vessel, it created a favorable environment for the healing process. Ameer and Kibbe noted a 50-60 percent reduction of scar formation compared to vessels without the membrane.
"We're putting something on the outside of the vessel that affects what happens inside the vessel," Ameer said. "It seems counterintuitive, but scarring also involves cells that are normally present on the outside layer of the blood vessel."
Damaged cells typically produce aggressive signals that cause their neighboring cells to become inflamed. Ameer said the material "keeps the cells quiet," so dangerous messages do not spread to the rest of the vessel. The membrane achieves local exposure to atRA, protecting the blood vessel and regulating how it responds to injury.
"Whether or not you employ a stent or attach a prosthetic graft to a blood vessel, you injure it," Ameer said. "The vessel's response to the injury can get out of control. With this fairly simple method, we are trying to control the inflammatory response and maintain adequate blood flow through the vessel."
INFORMATION:
High blood pressure is a leading cause of death around the world, and its prevalence continues to rise. A study published by Cell Press on November 20th in the journal Immunity shows that a protein in the spleen called placental growth factor (PlGF) plays a critical role in activating a harmful immune response that leads to the onset of high blood pressure in mice. The findings pave the way for the development of more effective treatments for this common and deadly condition.
High blood pressure, also known as hypertension, affects more than 1 billion people worldwide ...
The portion of the adult brain responsible for complex thought, known as the cerebral cortex, lacks the ability to replace neurons that die as a result of Alzheimer's disease, stroke, and other devastating diseases. A study in the International Society for Stem Cell Research's journal Stem Cell Reports, published by Cell Press on November 20 shows that a Sox2 protein, alone or in combination with another protein, Ascl1, can cause nonneuronal cells, called NG2 glia, to turn into neurons in the injured cerebral cortex of adult mice. The findings reveal that NG2 glia represent ...
As we age, we have an increasingly harder time ignoring distractions. But new research online November 20 in the Cell Press journal Neuron reveals that by learning to make discriminations of a sound amidst progressively more disruptive distractions, we can diminish our distractibility. A similar strategy might also help children with attention deficits or individuals with other mental challenges.
Distractibility, or the inability to sustain focus on a goal due to attention to irrelevant stimuli, can have a negative effect on basic daily activities, and it is a hallmark ...
CINCINNATI - Researchers have successfully targeted an important molecular pathway that fuels a variety of cancers and related developmental syndromes called "Rasopathies."
Reporting their results Nov. 20 in Chemistry & Biology, scientists at Cincinnati Children's Hospital Medical Center say they identified a class of lead compounds that successfully recognize a key target in the Ras signaling pathway - opening the door to future development of therapies that could make treatments more effective with fewer side effects.
Although still in the early stages of the development ...
While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with significant implications for stem cell-based regenerative medicine, wound repair therapies and potential cancer treatments.
The findings are published in the Nov. 20 online issue of Cell Reports.
Karl Willert, PhD, assistant professor in the Department of Cellular and Molecular Medicine, and colleagues were attempting to use induced pluripotent ...
VIDEO:
Researchers at the Salk Institute explain how a new technology, called ReBiL, can spot protein interactions more accurately, providing a new tool for cancer and other drug diagnostics.
Click here for more information.
LA JOLLA--For decades, researchers have struggled to translate basic scientific discoveries about cancer into therapeutics that effectively--and with minimal side effects--shrink a tumor.
One avenue that may hold great potential is the development of ...
Researchers at the RIKEN Brain Science Institute in Japan have identified a key neuronal pathway that makes learning to avoid unpleasant situations possible. Published online in the November 20 issue of Neuron, the work shows that avoidance learning requires neural activity in the habenula representing changes in future expectations.
Learning to avoid threats is an essential survival skill for both humans and animals. To do so, animals must be able to predict a danger and then update their predictions based on their actions and new outcomes. Until now, the neural mechanisms ...
Scientists have created the largest-scale map to date of direct interactions between proteins encoded by the human genome and newly predicted dozens of genes to be involved in cancer.
The new "human interactome" map describes about 14,000 direct interactions between proteins. The interactome is the network formed by proteins and other cellular components that 'stick together.' The new map is over four times larger than any previous map of its kind, containing more high-quality interactions than have come from all previous studies put together.
CIFAR Senior Fellow ...
PHILADELPHIA - Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it is increasingly clear that disruption of those cycles can lead to metabolic disease.
Underlying these circadian rhythms is a molecular clock built of DNA-binding proteins called transcription factors. These proteins control the oscillation of circadian genes, serving as the wheels and springs of the clock itself. Yet not all circadian cycles peak at the ...
Harvard Stem Cell Institute scientists at Brigham and Women's Hospital have found the cellular origin of the tissue scarring caused by organ damage associated with diabetes, lung disease, high blood pressure, kidney disease, and other conditions. The buildup of scar tissue is known as fibrosis.
Fibrosis has a number of consequences, including inflammation, and reduced blood and oxygen delivery to the organ. In the long term, the scar tissue can lead to organ failure and eventually death. It is estimated that fibrosis contributes to 45 percent of all deaths in the developed ...