PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Shaping the future of energy storage with conductive clay

Shaping the future of energy storage with conductive clay
2014-11-26
(Press-News.org) In the race to find materials of ever increasing thinness, surface area and conductivity to make better performing battery electrodes, a lump of clay might have just taken the lead. Materials scientists from Drexel University's College of Engineering invented the clay, which is both highly conductive and can easily be molded into a variety of shapes and sizes. It represents a turn away from the rather complicated and costly processing--currently used to make materials for lithium-ion batteries and supercapacitors--and toward one that looks a bit like rolling out cookie dough with results that are even sweeter from an energy storage standpoint.

With the publication of their recipe for "conductive MXene clay" in the Dec. 1 edition of Nature, the researchers suggest a significant shift in the way electrodes for storage devices are produced.

The clay, which already exhibits conductivity on par with that of metals, can be turned into a film--usable in an electrode--simply by rolling or pressing it.

"Both the physical properties of the clay, consisting of two-dimensional titanium carbide particles, as well as its performance characteristics, seem to make it an exceptionally viable candidate for use in energy storage devices like batteries and supercapacitors," said Yury Gogotsi, PhD, Distinguished University and Trustee Chair professor in the College of Engineering, and director of the A.J. Drexel Nanomaterials Institute, who is a co-author of the paper. "The procedure to make the clay also uses much safer, readily available ingredients than the ones we used to produce MXene electrodes in the past."

The key to the utility of this material, according to Michel Barsoum, PhD, Distinguished professor in the College of Engineering and one of the inventors of MXenes, is in its form.

"As anybody who has played with mud can attest, clay is hydrophilic -water-loving," Barsoum said. "Clay is also layered and when hydrated, the water molecules slide between the layers and render it plastic that in turn can be readily shaped into complex shapes. The same happens here; when we add water to MXene, water penetrates between the layers and endows the resulting material with plasticity and moldability. Graphene--a material widely studied for use in electrodes- on the other hand, is conductive but does not like water--it is hydrophobic. What we discovered is a conductive two-dimensional layered material that also loves water. The fact that we can now roll our electrodes rapidly and efficiently, and not have to use binders and/or conductive additives renders this material quite attractive from a mass production point of view."

The discovery came about while Michael Ghidiu, a doctoral student advised by Barsoum and Gogotsi in the Department of Materials Science and Engineering at Drexel, was testing a new method for making MXenes--two-dimensional materials invented at Drexel that are among the leading candidates for use in next-generation batteries and supercapacitors.

Straying slightly from the original chemical etching process pioneered at Drexel, which uses highly toxic hydrofluoric acid, Ghidiu instead used a fluoride salt and hydrochloric acid to etch aluminum out of a titanium-based, layered ceramic material called a MAX phase--also discovered at Drexel by Barsoum. These two ingredients, which are household names in chemistry class and are also much safer to handle than hydrofluoric acid, reduced the MAX phase to a pile of black particles. To stop the reaction and remove any residual chemicals, Ghidiu washed the material in water. But rather than finding the familiar layered MXene particles, he discovered that the etched sediment absorbed the water to form a clay-like material.

"We expected to find a slightly different material coming from the new process--but nothing like this," Ghidiu said. "We were just hoping for a safer, less expensive way to make MXenes, when something even better landed on the table."

One of the first tests the team performed on the clay was to see if it could be pressed into a thin layer while retaining its conductive properties--after all, its initial goal was to make a conductive film.

"Being able to roll clay into a film is quite a contrast in production time, safety and cost when compared to the two most common practices for making electrode materials," Ghidiu said. "Both the etching and peeling process used to make MXenes and a flaking, filtration and deposition method--like paper making--employ strong acids and costly, less common materials. The clay-making process is much simpler, quicker and safer."

With the new discovery, all these steps are avoided, greatly simplifying the processing. Now the researchers can simply etch the MAX phase, wash the resulting material and roll the resultant clay into films of various thicknesses.

"I would say the most important benefit to the new method--besides its increased capacitance--is that we can now make an electrode ready-to-go in about 15 minutes, whereas the total process before from the same starting point would be on the order of a day," Ghidiu said.

The availability of its ingredients also makes the clay rather appealing from a production standpoint.

"Being able to make a conductive clay, essentially out of titanium carbide with the help of a common fluoride salt and hydrochloric acid is the materials equivalent of making a chocolate chip cookie--everybody has these ingredients in the pantry," said Barsoum.

But a question that resounds through most materials research of this nature is, of course: what can it do with an electrical charge?

Thorough investigation of the clay's electrochemical performance, conducted by Maria Lukatskaya a doctoral student advised by Gogotsi and Barsoum, which was reported in the paper, indicated that the clay's ability to store an electrical charge is three times that reported for MXenes produced by hydrofluoric acid etching. This means it could find uses in the batteries that power cell phones and start cars, or even in a supercapacitor that could one day help renewable energy sources fit into a regional power grid.

"Keep in mind this is the very first generation of the material that we're testing," Lukatskaya said. "We haven't done a thing to augment its abilities, and at 900 F/cm3 it's already showing a higher capacitance per unit of volume than most other materials. We're also reporting that it does not lose any of its capacitance through more than 10,000 charge/discharge cycles, so we're talking about quite a special lump of clay here."

Changing materials scientists' medium from film to clay presents a variety of new avenues for research and manufacturing. The clay can be molded into any shape. It could also be watered down into a conductive paint that hardens within a few minutes while still retaining its conductive properties. This means it could have applications in batteries, conductive transparent coatings and reinforcement for composites among others.

An electron microscopic study of the clay particles dispersed in water, conducted by co-author Mengqiang Zhao, PhD, a post-doctoral researcher in Gogotsi's group, showed that the clay is made up of single layers of MXene about one nanometer--just a few atoms--thick. This atomically thin structure indicates that researchers are likely to find that the clay has many attractive electronic and optical properties as they continue to learn more about it.

"We plan to keep pushing forward with our study of this new material in hopes of developing a truly scalable manufacturing process, improving quality and yield of MXene and exfoliating other MAX phases to produce new MXenes, which could not be synthesized using the previously used process--the possibilities seem endless. While it might look like just a bit of clay, I believe this discovery will reshape research in the field going forward." Barsoum said.

INFORMATION:

This work was supported by the Ceramics Program of the National Science Foundation and by the U.S. Department of Energy's FIRST Energy Frontier Research Center.

Informational video on MXene clay available: https://www.youtube.com/watch?v=Ys6qz0T-hmA&feature=youtu.be


[Attachments] See images for this press release:
Shaping the future of energy storage with conductive clay Shaping the future of energy storage with conductive clay 2 Shaping the future of energy storage with conductive clay 3

ELSE PRESS RELEASES FROM THIS DATE:

Star Trek-like invisible shield found thousands of miles above Earth

Star Trek-like invisible shield found thousands of miles above Earth
2014-11-26
A team led by the University of Colorado Boulder has discovered an invisible shield some 7,200 miles above Earth that blocks so-called "killer electrons," which whip around the planet at near-light speed and have been known to threaten astronauts, fry satellites and degrade space systems during intense solar storms. The barrier to the particle motion was discovered in the Van Allen radiation belts, two doughnut-shaped rings above Earth that are filled with high-energy electrons and protons, said Distinguished Professor Daniel Baker, director of CU-Boulder's Laboratory ...

Vaccines may make war on cancer personal

Vaccines may make war on cancer personal
2014-11-26
In the near future, physicians may treat some cancer patients with personalized vaccines that spur their immune systems to attack malignant tumors. New research led by scientists at Washington University School of Medicine in St. Louis has brought the approach one step closer to reality. Like flu vaccines, cancer vaccines in development are designed to alert the immune system to be on the lookout for dangerous invaders. But instead of preparing the immune system for potential pathogen attacks, the vaccines will help key immune cells recognize the unique features of cancer ...

SU2C-supported research discovers why patients respond to a life-saving melanoma drug

SU2C-supported research discovers why patients respond to a life-saving melanoma drug
2014-11-26
LOS ANGELES - November 26, 2014 - Work supported by the Stand Up To Cancer (SU2C) - Cancer Research Institute (CRI) - Immunology Translational Research Dream Team, launched in 2012 to focus on how the patient's own immune system can be harnessed to treat some cancers have pioneered an approach to predict why advanced melanoma patients respond to a new life-saving melanoma drug. This new drug, pembrolizumab (Keytruda), was recently approved by the FDA. These findings are reported in Nature online November 26, 2014, ahead of print in the journal. Over a two-year study, ...

Researchers identify a natural shield against harmful radiation belt

2014-11-26
High above Earth's atmosphere, electrons whiz past at close to the speed of light. Such ultrarelativistic electrons, which make up the outer band of the Van Allen radiation belt, can streak around the planet in a mere five minutes, bombarding anything in their path. Exposure to such high-energy radiation can wreak havoc on satellite electronics, and pose serious health risks to astronauts. Now researchers at MIT, the University of Colorado, and elsewhere have found there's a hard limit to how close ultrarelativistic electrons can get to the Earth. The team found that ...

Matched 'hybrid' systems may hold key to wider use of renewable energy

Matched hybrid systems may hold key to wider use of renewable energy
2014-11-26
CORVALLIS, Ore. - The use of renewable energy in the United States could take a significant leap forward with improved storage technologies or more efforts to "match" different forms of alternative energy systems that provide an overall more steady flow of electricity, researchers say in a new report. Historically, a major drawback to the use and cost-effectiveness of alternative energy systems has been that they are too variable - if the wind doesn't blow or the sun doesn't shine, a completely different energy system has to be available to pick up the slack. This lack ...

NASA's Van Allen Probes spot an impenetrable barrier in space

NASAs Van Allen Probes spot an impenetrable barrier in space
2014-11-26
Two donuts of seething radiation that surround Earth, called the Van Allen radiation belts, have been found to contain a nearly impenetrable barrier that prevents the fastest, most energetic electrons from reaching Earth. The Van Allen belts are a collection of charged particles, gathered in place by Earth's magnetic field. They can wax and wane in response to incoming energy from the sun, sometimes swelling up enough to expose satellites in low-Earth orbit to damaging radiation. The discovery of the drain that acts as a barrier within the belts was made using NASA's ...

Elderly brains learn, but maybe too much

Elderly brains learn, but maybe too much
2014-11-26
PROVIDENCE, R.I. [Brown University] -- A new study led by Brown University reports that older learners retained the mental flexibility needed to learn a visual perception task but were not as good as younger people at filtering out irrelevant information. The findings undermine the conventional wisdom that the brains of older people lack flexibility, or "plasticity," but highlight a different reason why learning may become more difficult as people age: They learn more than they need to. Researchers call this the "plasticity and stability dilemma." The new study suggests ...

Dogs hear our words and how we say them

Dogs hear our words and how we say them
2014-11-26
VIDEO: When people hear another person talking to them, they respond not only to what is being said -- those consonants and vowels strung together into words and sentences --but also... Click here for more information. When people hear another person talking to them, they respond not only to what is being said--those consonants and vowels strung together into words and sentences--but also to other features of that speech--the emotional tone and the speaker's gender, for instance. ...

With age, we lose our visual learning filter

2014-11-26
Older people can actually take in and learn from visual information more readily than younger people do, according to new evidence reported in the Cell Press journal Current Biology on November 26. This surprising discovery is explained by an apparent decline with age in the ability to filter out irrelevant information. "It is quite counterintuitive that there is a case in which older individuals learn more than younger individuals," says Takeo Watanabe of Brown University. Older individuals take in more at the same time as the stability of their visual perceptual ...

An enzyme that fixes broken DNA sometimes destroys it instead, Stanford researchers find

2014-11-26
Enzymes inside cells that normally repair damaged DNA sometimes wreck it instead, researchers at the Stanford University School of Medicine have found. The insight could lead to a better understanding of the causes of some types of cancer and neurodegenerative disease. In a paper to be published online Nov. 27 in Molecular Cell, the researchers explain how the recently discovered mechanism of DNA damage occurs when genetic transcripts, composed of RNA, stick to the DNA instead of detaching from it. Certain enzymes, called endonucleases, are attracted to DNA/RNA hybrids ...

LAST 30 PRESS RELEASES:

Artificial intelligence enhances monitoring of threatened marbled murrelet

The solution to kidney bleeding and recovery lies within a hemostasis sponge, using the inherent capabilities of the kidneys

Sylvester Cancer adding cellular therapy to its arsenal against metastatic melanoma

Study finds biomarkers for psychiatric symptoms in patients with rare genetic condition 22q

Medical school scientist creates therapy to kill hypervirulent bacteria

New study supports psilocybin’s potential as an antidepressant

The Lancet Public Health: Global study reveals stark differences between females and males in major causes of disease burden, underscoring the need for gender-responsive approaches to health

Revealed: face of 75,000-year-old female Neanderthal from cave where species buried their dead

Hepatitis B is globally underassessed and undertreated, especially among women and Asian minorities in the West

Efficient stochastic parallel gradient descent training for on-chip optical processors

Liquid crystal-integrated metasurfaces for an active photonic platform

Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors

A novel deep proteomic approach unveils molecular signatures affected by aging and resistance training

High-intensity spatial-mode steerable frequency up-converter toward on-chip integration

Study indicates that cancer patients gain important benefits from genome-matched treatments

Gift to UCR clinic aims to assist local unhoused population

Research breakthrough on birth defect affecting brain size

Researchers offer US roadmap to close the carbon cycle

Precipitation may brighten Colorado River’s future

Identifying risks of human flea infestations in plague-endemic areas of Madagascar

Archaea can be picky parasites

EPA underestimates methane emissions from landfills, urban areas

Feathers, cognition and global consumerism in colonial Amazonia

Satellite images of plants’ fluorescence can predict crop yields

Machine learning tool identifies rare, undiagnosed immune disorders through patients’ electronic health records

MD Anderson researcher Sharon Dent elected to prestigious National Academy of Sciences

Nonmotor seizures may be missed in children, teens

Emergency departments frequently miss signs of epilepsy in children

Unraveling the roles of non-coding DNA explains childhood cancer’s resistance to chemotherapy

Marshall University announces new clinical trial studying the effect of ACL reconstruction on return to play in sports

[Press-News.org] Shaping the future of energy storage with conductive clay