PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stem cells faulty in Duchenne muscular dystrophy, Stanford researchers find

2014-12-17
(Press-News.org) Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have found that the fault may lie at least partly in the stem cells that surround the muscle fibers.

They've found that during the course of the disease, the stem cells become less able to make new muscle and instead begin to express genes involved in the formation of connective tissue. Excess connective tissue -- a condition called fibrosis -- can accumulate in many organs, including the lungs, liver and heart, in many different disorders. In the skeletal muscles of people with muscular dystrophy, the fibrotic tissue impairs the function of the muscle fibers and leads to increasing weakness and stiffness, which are hallmarks of the disease.

The researchers discovered that this abnormal change in stem cells could be inhibited in laboratory mice by giving the animals a drug that is already approved for use in humans. The drug works by blocking a signaling pathway involved in the development of fibrosis. Although much more research is needed, the scientists are hopeful that a similar approach may one day work in children with muscular dystrophy.

"These cells are losing their ability to produce muscle, and are beginning to look more like fibroblasts, which secrete connective tissue," said Thomas Rando, MD, PhD, professor of neurology and neurological sciences. "It's possible that if we could prevent this transition in the muscle stem cells, we could slow or ameliorate the fibrosis seen in muscular dystrophy in humans."

A paper describing the researchers' findings will be published Dec. 17 in Science Translational Medicine. Rando, the paper's senior author, is director of the Glenn Laboratories for the Biology of Aging and founding director of the Muscular Dystrophy Association Clinic at Stanford. Former postdoctoral scholar Stefano Biressi, PhD, is the lead author. Biressi is now at the Centre for Integrative Biology at the University of Trento in Italy.

A devastating disease

Duchenne muscular dystrophy is a devastating disease that affects about 1 in every 3,600 boys born in the United States. Patients usually experience severe, progressive muscle weakness that confines them to a wheelchair in early adolescence and eventually leads to paralysis. It's caused by mutations in the dystrophin gene, which encodes the dystrophin protein. The dystrophin protein serves to connect muscle fibers to the surrounding external matrix. This connection stabilizes the fibers, enhancing their strength and preventing injury. Sufferers are nearly always boys because the dystrophin gene is located on the X chromosome. (Girls would need to inherit two faulty copies, which is unlikely because male carriers often die in early adulthood.)

Under normal conditions, muscle stem cells respond to muscle damage by dividing into cells, one of which becomes new muscle, while the other remains a stem cell. However, in the mice missing the dystrophin gene, the muscle stem cells slowly assume a different fate. They begin to resemble fibroblasts instead of muscle-making machines.

To conduct the research, Biressi and Rando used a strain of laboratory mice in which the muscle stem cells were engineered to glow with a fluorescent light when treated with a drug called tamoxifen. They then bred the mice with another strain in which the dystrophin gene is mutated, and followed the fate of the cells over time.

The researchers found that the expression of myogenic genes, which are associated with the regeneration of muscle in response to injury, was nearly completely lacking in many of the muscle stem cells in the mice after just 11 months, while the expression of fibrotic genes had increased compared with that of control animals. The cells from the dystrophic animals were also oddly located: Rather than being nestled next to the muscle fibers, they had begun to move away into the spaces between tissues.

The role of a signaling pathway

Rando and Biressi knew that a similar, but much less pronounced, accumulation of connective tissue in muscle fibers occurs during normal aging. That process is governed by signaling proteins, which include the Wnt and TGF-beta protein families. Wnt plays a critical role in embryonic development and cancer; TGF-beta controls cell division and specialization. They wondered whether blocking the Wnt/TGF-beta pathway in the dystrophic mice would inhibit fibrosis in the animals' muscles.

The researchers turned to a drug called losartan, which is used to treat high blood pressure. Losartan inhibits the expression of the genes for TGF-beta types 1 and 2. The researchers thought it would probably interrupt the signaling pathway that leads the muscle stem cells astray.

Treating the mice with losartan, they found, did in fact prevent the muscle stem cells from expressing fibrosis-associated genes and partially maintained their ability to form new muscle.

"This scar tissue, or fibrosis, leaves the muscle less elastic and impairs muscle function," Rando said. "So we'd like to understand why it happens, and how to prevent it. It's also important to limit fibrosis to increase the likelihood of success with other possible therapies, such as cell therapy or gene therapy."

Next steps

Because TGF-beta type 1 plays many roles throughout the body, the researchers are now working to find ways to specifically inhibit TGF-beta type 2, which is involved in the transition of the muscle stem cells. They're also interested in learning how to translate the research to other diseases.

"Fibrosis seems to occur in a vicious cycle," Rando said. "As the muscle stem cells become less able to regenerate new muscle, the tissue is less able to repair itself after damage. This leads to fibrosis, which then further impairs muscle formation. Understanding the biological basis of fibrosis could have a profound effect on many other diseases."

INFORMATION:

Other Stanford researchers include visiting scholar Elen Miyabara, PhD, from the University of São Paulo in Brazil; postdoctoral scholar Suchitra Gopinath, PhD; and research assistant Poppy Carlig.

The research was funded by the National Institutes of Health (grants AG036695, AG023806, AR062185 and AR056849), the Department of Veterans Affairs, the Muscular Dystrophy Association and the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior.

Information about Stanford's Department of Neurology and Neurological Sciences, which also supported the work, is available at neurology.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://med.stanford.edu.

Print media contact: Krista Conger at (650) 725-5371 (kristac@stanford.edu) Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)



ELSE PRESS RELEASES FROM THIS DATE:

Dutch barnacle geese have more active immune system than same species in the North

Dutch barnacle geese have more active immune system than same species in the North
2014-12-17
Bird migration is an impressive phenomenon, but why birds often travel huge distances to and from their breeding grounds in the far North is still very unclear. Suggestions include that the birds profit from longer daylight hours, or that there are fewer predators. Researchers from the University of Groningen and the NIOO-KNAW Vogeltrekstation, the Dutch centre for bird migration and demographics, have discovered a new explanation. They investigated barnacle geese breeding on Spitsbergen and compared them with birds of the same species that did not migrate but stayed ...

Policy action urgently needed to protect Hawaii's dolphins

2014-12-17
DURHAM, N.C. -- The best way to protect wild spinner dolphins in Hawaii while also maintaining the local tourism industry that depends on them is through a combination of federal regulations and community-based conservation measures, finds a new study from Duke University. Each year, hundreds of thousands of tourists to Hawaii pay to have up-close encounters with the animals, swimming with them in shallow bays the dolphins use as safe havens for daytime rest. But as the number of tours increases, so do the pressures they place on the resting dolphins. The Duke study ...

New conversion process turns biomass 'waste' into lucrative chemical products

New conversion process turns biomass waste into lucrative chemical products
2014-12-17
A new catalytic process is able to convert what was once considered biomass waste into lucrative chemical products that can be used in fragrances, flavorings or to create high-octane fuel for racecars and jets. A team of researchers from Purdue University's Center for Direct Catalytic Conversion of Biomass to Biofuels, or C3Bio, has developed a process that uses a chemical catalyst and heat to spur reactions that convert lignin into valuable chemical commodities. Lignin is a tough and highly complex molecule that gives the plant cell wall its rigid structure. Mahdi ...

Surprising theorists, stars within middle-aged clusters are of similar age

2014-12-17
A close look at the night sky reveals that stars don't like to be alone; instead, they congregate in clusters, in some cases containing as many as several million stars. Until recently, the oldest of these populous star clusters were considered well understood, with the stars in a single group having formed at different times, over periods of more than 300 million years. Yet new research published online today in the journal Nature suggests that the star formation in these clusters is more complex. Using data from the Hubble Space Telescope, a team of researchers at the ...

ORNL microscopy pencils patterns in polymers at the nanoscale

ORNL microscopy pencils patterns in polymers at the nanoscale
2014-12-17
OAK RIDGE, Tenn., Dec. 17, 2014--Scientists at the Department of Energy's Oak Ridge National Laboratory have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time. The study provides new evidence that atomic force microscopy, or AFM, could be used to precisely fabricate materials needed for increasingly smaller devices. Polymerized ionic liquids have potential applications in technologies such as lithium batteries, transistors and solar cells because of their high ionic conductivity and unique ...

Lens-free microscope can detect cancer at the cellular level

2014-12-17
UCLA researchers have developed a lens-free microscope that can be used to detect the presence of cancer or other cell-level abnormalities with the same accuracy as larger and more expensive optical microscopes. The invention could lead to less expensive and more portable technology for performing common examinations of tissue, blood and other biomedical specimens. It may prove especially useful in remote areas and in cases where large numbers of samples need to be examined quickly. The microscope is the latest in a series of computational imaging and diagnostic devices ...

NOAA/NASA satellite sees holiday lights brighten cities

NOAA/NASA satellite sees holiday lights brighten cities
2014-12-17
VIDEO: It's official -- our holiday lights are so bright we can see them from space. Thanks to the VIIRS instrument on the Suomi NPP satellite, a joint mission between NASA... Click here for more information. Even from space, holidays shine bright. With a new look at daily data from the NOAA/NASA Suomi National Polar-orbiting Partnership (Suomi NPP) satellite, a NASA scientist and colleagues have identified how patterns in nighttime light intensity change during major holiday ...

NASA's sun watching observatory sees mid-level solar flare on Dec. 16, 2014

NASAs sun watching observatory sees mid-level solar flare on Dec. 16, 2014
2014-12-17
The sun emitted a mid-level solar flare, peaking at 11:50 p.m. EST on Dec. 16, 2014. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, ...

Study: 49 percent of patients withhold clinically sensitive information

Study: 49 percent of patients withhold clinically sensitive information
2014-12-17
In the first real-world trial of the impact of patient-controlled access to electronic medical records, almost half of the patients who participated withheld clinically sensitive information in their medical records from some or all of their health care providers. This is the key finding of a new study by researchers from Clemson University, the Regenstrief Institute, Indiana University School of Medicine and Eskenazi Health published in the Journal of General Internal Medicine. Kelly Caine, assistant professor in Clemson's School of Computing, and colleagues at Clemson ...

Ancient, hydrogen-rich waters discovered deep underground at locations around the world

Ancient, hydrogen-rich waters discovered deep underground at locations around the world
2014-12-17
A team of scientists, led by the University of Toronto's Barbara Sherwood Lollar, has mapped the location of hydrogen-rich waters found trapped kilometres beneath Earth's surface in rock fractures in Canada, South Africa and Scandinavia. Common in Precambrian Shield rocks - the oldest rocks on Earth - the ancient waters have a chemistry similar to that found near deep sea vents, suggesting these waters can support microbes living in isolation from the surface. The study, to be published in Nature on December 18, includes data from 19 different mine sites that were ...

LAST 30 PRESS RELEASES:

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

Health care utilization and costs for older adults aging into Medicare after the affordable care act

Reading the genome and understanding evolution: Symbioses and gene transfer in leaf beetles

Brains of people with sickle cell disease appear older

[Press-News.org] Stem cells faulty in Duchenne muscular dystrophy, Stanford researchers find