(Press-News.org) CHESTNUT HILL, MA (Dec. 17, 2014) - The next generation of light-manipulating networks may take their lead from designs inspired by spiders and leaves, according to a new report from two Boston College physicists and colleagues at South China Normal University.
Structures as commonplace as spider webs and leaf venation show they can lead to near optimal performance when copied to create flexible and durable networks that can be used in optoelectronic applications such as photovoltaic devices and display screens, the researcher team reported in a recent edition of the journal Nature Communications.
"Our idea is quite simple and far-reaching," said Research Associate Professor of Physics Andrzej Herczynski, a co-author of the report. "It starts with the premise that natural forms offer ready-made solutions for efficient designs, tested over millions of years through natural selection."
A network design inspired by the vein-laced structure of a leaf served as an effective electrode for solar cells, light sources and transparent heaters, among other applications, the team reported.
"This natural structure has been optimized through the evolutionary process for efficient nutrient delivery with maximal strength and light harvesting," said co-author Boston College Professor of Physics Krzysztof Kempa. "In our application, these properties translate into highly efficient current transport, desirable mechanical properties, and minimal light shading."
A second network, drawing on the same designs that make spider webs effective traps for insects and bugs, serves as an efficient way to draw light through an optoelectronic device. The network could find potential application in next generation touch screens and display panels because of its extreme flexibility, significant mechanical strength, "stealth" transparency and high degree of uniformity, the researchers said.
One of the primary advantages of these two proposed methods is the low cost and simplicity of the manufacturing process.
The researchers said they were surprised by the superior performance of the networks in experimental scenarios. Both delivered a four-fold increase in electro-optical properties, or the benchmark figure of merit. Furthermore, the spider web design network can be stretched by up to 25 percent without any loss of performance and sees only a minimal decline when stretched up to 100 percent of its original size, the team reported.
"No other electrode network can be stretched more than 10 percent," said Kempa. Other members of the research team included University of Houston Prof. Zhifeng Ren and South China Normal University Prof. Jinwej Gao and his research team.
The researchers say the specific network patterns they have proposed could improve the efficiency of solar cells and the performance of a new generation of flexible, durable touch screens and displays.
"Increasing efficiency of solar cells, in particular, is a critical component in the quest for renewable energy sources, a major sustainability and ecological challenge," said Herczynski. "Flexible monitors and displays will likely become increasingly important for such possible uses as wearable screens and elastic smart phones."
INFORMATION:
LEBANON, NH - A health promotion program, called In SHAPE, specifically designed for people with serious mental illness, produced more fit participants and significant weight loss than a control group where participants only received a gym membership.
The results of a randomized clinical trial, published in the Dec. 12 American Journal of Psychiatry, Dr. Stephen Bartels of Dartmouth and colleagues showed that more than half the participants in the In SHAPE group achieved clinically significant reduction in cardiovascular risk. These positive outcomes were maintained six ...
When designing a new car, manufacturers might try to attract consumers with more horsepower, increased fuel efficiency or a lower price point. But new research from San Francisco State University shows consumers' loyalty and passion for an automobile brand are driven more by appearance. Aesthetics that resonate on an emotional level are more responsible for brand loyalty than such factors as functionality and price, the study found.
"In product design, if you focus more on the aesthetics of the product, the connections that you create with the consumer at the brand level ...
Stepping on the scale is common among dieters but how does the frequency of weigh-ins impact weight? A new study in PLOS ONE showed that the more frequently dieters weighed themselves the more weight they lost, and if participants went more than a week without weighing themselves, they gained weight.
The researchers analyzed 2,838 weight measurements (up to a years' worth of weigh-ins) from 40 overweight individuals (with a body mass index of 25 and over) who indicated that weight loss was a personal goal or concern. The researchers found that weight loss was related ...
DENVER - Next generation sequencing in malignant pleural mesothelioma (MPM) tumors shows a complex mutational setting with a high number of genetic alterations in genes involved in DNA repair, cell survival and cell proliferation pathways. Increased accumulation of mutations correlates with early progression of the tumor and decreased survival.
MPM is a fatal cancer associated with asbestos exposure that develops on the outer linings of the lungs. The 3-year survival rate is only 8% and most MPM patients are diagnosed with late stage disease with limited therapeutic options. ...
DENVER - A prospective nationwide survey on perceptions of lung cancer in the general population of France highlights a need for increased public education on the benefits of lung cancer screening, the good survival rates of early-stage disease and the improved outcomes with new therapeutic strategies, including targeted-therapies.
Lung cancer management in recent years has improved patient outcomes because of screening, improved surgery and radiotherapy in early and locally-advanced stages of disease, new chemotherapies, validated maintenance therapy, and effective targeted ...
High-energy jets powered by supermassive black holes can blast away a galaxy's star-forming fuel, resulting in so-called "red and dead" galaxies: those brimming with ancient red stars yet containing little or no hydrogen gas to create new ones.
Now astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that black holes don't have to be nearly so powerful to shut down star formation. By observing the dust and gas at the center of NGC 1266, a nearby lenticular galaxy with a relatively modest central black hole, the astronomers have detected ...
BELLINGHAM, Washington, USA - The first issue of the new Journal of Astronomical Telescopes, Instruments, and Systems (JATIS) has been launched by SPIE, the international society for optics and photonics. All articles will be freely available through the end of 2015 in the SPIE Digital Library. Mark Clampin, SPIE Fellow and James Webb Space Telescope Observatory Project Scientist at NASA Goddard Space Flight Center, is editor-in-chief.
"A key motivation for the creation of this journal has been the continuing success of SPIE's Instrumentation in Astronomy conference ...
VIDEO:
The Arctic Ocean is absorbing more of the sun's energy in recent years as white, reflective sea ice melts and darker ocean waters are exposed. The increased darker surface area...
Click here for more information.
NASA satellite instruments have observed a marked increase in solar radiation absorbed in the Arctic since the year 2000 - a trend that aligns with the steady decrease in Arctic sea ice during the same period.
While sea ice is mostly white and reflects the ...
Johns Hopkins researchers have developed a sugar-based molecular microcapsule that eliminates the toxicity of an anticancer agent developed a decade ago at Johns Hopkins, called 3-bromopyruvate, or 3BrPA, in studies of mice with implants of human pancreatic cancer tissue. The encapsulated drug packed a potent anticancer punch, stopping the progression of tumors in the mice, but without the usual toxic effects.
"We developed 3BrPA to target a hallmark of cancer cells, namely their increased dependency on glucose compared with normal cells. But the nonencapsulated drug ...
In a development that holds promise for future magnetic memory and logic devices, researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and Cornell University successfully used an electric field to reverse the magnetization direction in a multiferroic spintronic device at room temperature. This demonstration, which runs counter to conventional scientific wisdom, points a new way towards spintronics and smaller, faster and cheaper ways of storing and processing data.
"Our work shows that 180-degree magnetization switching ...