(Press-News.org) Researchers sketching out a wiring diagram for rat brains -- a field known as "connectomics" -- have discovered that its structure is organized like the Internet.
For years, scientists looking for clues to brain function through its structure focused on what could be seen -- the brain's lobes, grooves and folds. Now, with a more comprehensive picture of how neurons connect to one another, they've discovered local networks of neurons nested into one another like shells.
"The cerebral cortex is like a mini-Internet," said Larry Swanson, professor at the USC Dornsife College of Letters, Arts and Sciences, and corresponding author of a paper on the discovery. "The Internet has countless local area networks that then connect with larger, regional networks and ultimately with the backbone of the Internet. The brain operates in a similar way."
The study will be published in the Proceedings of the National Academy of Sciences on April 6.
Two local networks -- one governing vision and learning, and another tapped into bodily concerns like muscle and organ function -- make up the inner shell of the rat's cerebral cortex. Two others -- one governing smell, and another that assembles and makes sense of the information from the other three networks -- make up the outer shell.
This means that certain flows of information are genetically "hardwired" into the brain, Swanson said.
The discovery is the result of a massive, labor-intensive effort to organize 40 years' worth of data from peer-reviewed research articles detailing connections in rat brains.
"The data was already out there; it just needed to be compiled into a more useful format," Swanson said.
Lead author Mihail Bota of USC Dornsife created the database from more than 16,000 reports of connections, which he weighted both on the strength of the connection and the reliability of the methodology used to discover it. The process took more than 4,000 hours to complete, yielding a database that is free and available online here: http://brancusi1.usc.edu/connections/grid/168.
Olaf Sporns of Indiana University subsequently performed a network analysis of the connections. In addition to finding the local networks, the team also discovered hubs -- highly interconnected and crucial centers of neural traffic linking local networks together. Previous research has shown that the regions the team identified as hubs can be, when damaged, the source of neurodegenerative diseases and epilepsy.
The team used studies of rat brains because of the sheer volume of detailed information available. Swanson believes that the database can create an important link between human brain studies -- which are largely done as non-invasive functional magnetic resonance imaging scans -- and rat brain studies, which can be more in-depth.
"Having a wiring diagram for the brain will allow knowledge to flow both ways between human and animal studies," Swanson said. "This allows us to take theories from human brain scan studies and experimentally verify them in animals, and discoveries made in animal studies are likely to have an analogue in humans."
In that way, Swanson's work complements the ongoing research of Arthur Toga and Paul Thompson at the USC Mark and Mary Stevens Neuroimaging and Informatics Institute.
Like Swanson, researchers at the Stevens Institute use huge data collections and computational strategies to mine for new insight into the brain.
"We're bridging the gap between our work in rat brains and the Stevens Institute's work with human brains," Swanson said. "If we can connect these two veins of neuroscience in a concrete and meaningful way, then we can dramatically expand our reservoir of information about the brain practically overnight."
The Stevens Institute -- recently named and endowed by a $50 million gift from longtime USC benefactors Mark and Mary Stevens -- is home to the largest collection of brain scans in the world.
In the future, Swanson hopes to be able to expand the neural-connection map of the rat brain beyond the cerebral cortex, some day mapping the entire nervous system.
INFORMATION:
The research was supported in part by a grant from the National Institutes of Health (grant NS050792 from the National Institute of Neurological Diseases and Stroke).
Scientists funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have identified a cellular receptor for rhinovirus C, a cold-causing virus that is strongly associated with severe asthma attacks. A variant in the gene for this receptor previously had been linked to asthma in genetic studies, but the potential role of the receptor, called CDHR3, in asthma was unknown. The new findings help clarify the function of CDHR3 and point to a novel target for the development of prevention and treatment strategies against ...
Researchers are always searching for improved technologies, but the most efficient computer possible already exists. It can learn and adapt without needing to be programmed or updated. It has nearly limitless memory, is difficult to crash, and works at extremely fast speeds. It's not a Mac or a PC; it's the human brain. And scientists around the world want to mimic its abilities.
Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices ...
New mothers in the Philippines spend more time in the bedroom with their partner in the first few weeks after giving birth than they did before they became pregnant. This might be a type of survival strategy to keep the relationships with the fathers of their new babies alive and well, to ensure continued support for their offspring. So says Michelle Escasa-Dorne of the University of Colorado in the US, after studying how women from a society with a low divorce rate such as the Philippines adapt to being both mothers and lovers. The study appears in Springer's journal Human ...
WINSTON-SALEM, N.C. - April 6, 2015 - A commonly prescribed antidepressant caused up to a six-fold increase in atherosclerosis plaque in the coronary arteries of non-human primates, according to a study by researchers at Wake Forest Baptist Medical Center. Coronary artery atherosclerosis is the primary cause of heart attacks.
The study is published in the current online issue of the journal Psychosomatic Medicine.
"The medical community has known for years that depression is closely associated with heart disease, but we didn't know if treating it would reduce the heart ...
A new UCLA study takes another step toward the early understanding of a degenerative brain condition called chronic traumatic encephalopathy, or CTE, which affects athletes in contact sports who are exposed to repetitive brain injuries. Using a new imaging tool, researchers found a strikingly similar pattern of abnormal protein deposits in the brains of retired NFL players who suffered from concussions.
The innovative imaging technique uses a chemical marker combined with positron emission tomography, or PET scan, and was initially tested in five retired NFL players ...
SAN FRANCISCO--The Pacific and North America plate boundary off the coast of British Columbia and southeastern Alaska is a complex system of faults capable of producing very large earthquakes. The recent 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig earthquakes released strain built up over years, but did not release strain along the Queen Charlotte Fault, which remains the likely source of a future large earthquake, according to reports published in a special issue of the Bulletin of the Seismological Society of America (BSSA).
"The study of these two quakes revealed ...
Massachusetts General Hospital (MGH) investigators have identified an inflammatory molecule that appears to play an essential role in the autoimmune disorder systemic lupus erythematosus, commonly known as lupus. In their report being published online in Nature Immunology, the researchers describe finding that a protein that regulates certain cells in the innate immune system - the body's first line of defense against infection - activates a molecular pathway known to be associated with lupus and that the protein's activity is required for the development of lupus symptoms ...
MIT researchers have developed a new, ultrasensitive magnetic-field detector that is 1,000 times more energy-efficient than its predecessors. It could lead to miniaturized, battery-powered devices for medical and materials imaging, contraband detection, and even geological exploration.
Magnetic-field detectors, or magnetometers, are already used for all those applications. But existing technologies have drawbacks: Some rely on gas-filled chambers; others work only in narrow frequency bands, limiting their utility.
Synthetic diamonds with nitrogen vacancies (NVs) -- ...
Dividing cells--whether they're in an embryo or an adult--rely on the right processes happening at the right time to turn out healthy.
Now, researchers at the University of Iowa have identified a mechanism that dividing cells in worms use to ensure their proper development, and they believe the same process could be going on in humans. The mechanism, unknown until now, describes one part of the cell, called the centrosome, as an "internal timekeeper"--like a train conductor. A crucial protein in charge of gene expression, beta-catenin, is described as a "hitchhiker"--it ...
Physical activity that makes you puff and sweat is key to avoiding an early death, a large Australian study of middle-aged and older adults has found.
The researchers followed 204,542 people for more than six years, and compared those who engaged in only moderate activity (such as gentle swimming, social tennis, or household chores) with those who included at least some vigorous activity (such as jogging, aerobics or competitive tennis).
They found that the risk of mortality for those who included some vigorous activity was 9 to 13 per cent lower, compared with those ...