(Press-News.org) Massachusetts General Hospital (MGH) investigators have identified an inflammatory molecule that appears to play an essential role in the autoimmune disorder systemic lupus erythematosus, commonly known as lupus. In their report being published online in Nature Immunology, the researchers describe finding that a protein that regulates certain cells in the innate immune system - the body's first line of defense against infection - activates a molecular pathway known to be associated with lupus and that the protein's activity is required for the development of lupus symptoms in a mouse model of the disease.
"This study is the first demonstration that the receptor TREML4 amplifies the cellular responses transmitted through the TLR7 receptor and that a lack of such amplification prevents the inflammatory overactivation underlying lupus," says Terry Means, PhD, of the Center for Immunology and Inflammatory Diseases in the MGH Division of Rheumatology, Allergy, and Immunology. "Our preliminary results suggest that TREML4-regulated signaling through TLR7 may be a potential drug target to limit inflammation and the development of autoimmunity."
Lupus is an autoimmune disorder characterized by periodic inflammation of joints, connective tissues and organs including heart, lungs, kidneys and brain. TLR7 is one of a family of receptors present on innate immune cells like macrophages that have been linked to chronic inflammation and autoimmunity. Animal studies have suggested that overactivation of TLR7 plays a role in lupus, and a gene variant that increases expression of the receptor has been associated with increased lupus risk in human patients. The current study was designed to identify genes for other molecules required for TLR7-mediated immune cell activation.
The MGH-based team conducted an RNA-interference-based genome-scale screen of mouse macrophages, selectively knocking down the expression of around 8,000 genes, and found that TREML4 - one of a family of receptors found on granulocytes and monocytes - amplifies the response of innate immune cells to activation via TLR7. Immune cells from mice lacking TREML4 showed a weakened response to TLR7 activation. When a strain of mice genetically destined to develop a form of TLR7-dependent lupus was crossbred with a strain in which TREML4 expression was suppressed, offspring lacking TREML4 were protected from the development of lupus-associated kidney failure and had significantly lower blood levels of inflammatory factors and autoantibodies than did mice expressing TREML4.
Means notes that identifying the potential role of TREML4 in human lupus may lead to the development of drugs that could prevent or reduce the development or progression of lupus and another autoimmune disorder called Sjögren's syndrome, which also appears to involve TLR7 overactivation. Future studies are needed to better define the molecular mechanism behind TREML4-induced amplification of TLR7 signaling and to clarify beneficial reactions controlled by TREML4 - for example, the immune response to influenza virus, which the current study found was inhibited by TREML4 deficiency.
"Given that only one new drug has been approved for lupus patients in the last 50 years, there is a pressing need for more specific and less toxic drugs to treat it and other autoimmune disorders," says Means, who is an assistant professor of Medicine at Harvard Medical School.
INFORMATION:
Zaida Ramirez-Ortiz, PhD, and Amit Prasad of the MGH Center for Immunology and Inflammatory Diseases (CIID), are co-lead author of the Nature Immunology paper. Additional co-authors are Jason Griffith, MD, PhD, Melissa Tai, Andrew Luster, MD, PhD, Joseph El Khoury, MD, and Nir Hacohen, PhD, MGH-CIID; William Pendergraft , MD, University of North Carolina; and Glenn Cowley, PhD, and David Root, PhD, Broad Institute. The study was supported by the National Institutes of Health grants AI084884, AI082660, AI007061, AR051367, AR066716 and DK097891; the Lupus Research Institute; the Alliance for Lupus Research; and the American Society of Nephrology.
Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $760 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.
MIT researchers have developed a new, ultrasensitive magnetic-field detector that is 1,000 times more energy-efficient than its predecessors. It could lead to miniaturized, battery-powered devices for medical and materials imaging, contraband detection, and even geological exploration.
Magnetic-field detectors, or magnetometers, are already used for all those applications. But existing technologies have drawbacks: Some rely on gas-filled chambers; others work only in narrow frequency bands, limiting their utility.
Synthetic diamonds with nitrogen vacancies (NVs) -- ...
Dividing cells--whether they're in an embryo or an adult--rely on the right processes happening at the right time to turn out healthy.
Now, researchers at the University of Iowa have identified a mechanism that dividing cells in worms use to ensure their proper development, and they believe the same process could be going on in humans. The mechanism, unknown until now, describes one part of the cell, called the centrosome, as an "internal timekeeper"--like a train conductor. A crucial protein in charge of gene expression, beta-catenin, is described as a "hitchhiker"--it ...
Physical activity that makes you puff and sweat is key to avoiding an early death, a large Australian study of middle-aged and older adults has found.
The researchers followed 204,542 people for more than six years, and compared those who engaged in only moderate activity (such as gentle swimming, social tennis, or household chores) with those who included at least some vigorous activity (such as jogging, aerobics or competitive tennis).
They found that the risk of mortality for those who included some vigorous activity was 9 to 13 per cent lower, compared with those ...
Leading coral reef scientists say Australia could restore the Great Barrier Reef to its former glory through better policies that focus on science, protection and conservation.
In a paper published in the journal Nature Climate Change, the authors argue that all the stressors on the Reef need to be reduced for it to recover.
An Australian Government report into the state of the Great Barrier Reef found that its condition in 2014 was "poor and expected to further deteriorate in the future". In the past 40 years, the Reef has lost more than half of its coral cover and ...
Many nursing home residents who underwent lower extremity revascularization died, did not walk or had functional decline following the procedure, which is commonly used to treat leg pain caused by peripheral arterial disease, wounds that will not heal or worsening gangrene, according to an article published online by JAMA Internal Medicine.
Lower extremity revascularization is often performed so patients with peripheral arterial disease can maintain the ability to walk, which is a key component of functional independence. But outcomes among patients with high levels of ...
Quality of life was good and cognitive function was similar in patients with cardiac arrest who received targeted body-temperature management as a neuroprotective measure in intensive care units in Europe and Australia, according to an article published online by JAMA Neurology.
Brain injury is the primary cause of death for patients treated in intensive care units after suffering cardiac arrest (CA) outside of a hospital. Targeted temperature management (TTM) has been implemented as a neuroprotective treatment for comatose CA survivors because of reports of improved ...
Application of pediatric guidelines for lipid levels for persons 17 to 21 years of age who have elevated low-density lipoprotein cholesterol (LDL-C) levels would result in statin treatment for more than 400,000 additional young people than the adult guidelines, according to an article published online by JAMA Pediatrics.
Adolescence is a common time for the emergence of risk factors for cardiovascular disease, including abnormal cholesterol levels. The 2011 National Heart, Lung, and Blood Institute Integrated Guidelines for Cardiovascular Health and Risk Reduction in ...
Only a few U.S. nursing home residents who undergo lower extremity revascularization procedures are alive and ambulatory a year after surgery, according to UCSF researchers, and most patients still alive gained little, if any, function.
The study appears in the April 6 issue of JAMA Internal Medicine.
"Our findings can inform conversations among physicians, patients and families about the risks and expected outcomes of surgery and whether the surgery is likely to allow patients to achieve their treatment goals," said senior author Emily Finlayson, MD, MS, associate ...
Seventy per cent of glacier ice in British Columbia and Alberta could disappear by the end of the 21st century, creating major problems for local ecosystems, power supplies, and water quality, according to a new study by University of British Columbia researchers.
The study found that while warming temperatures are threatening glaciers in Western Canada, not all glaciers are retreating at the same rate. The Rocky Mountains, in the drier interior, could lose up to 90 per cent of its glaciers. The wetter coastal mountains in northwestern B.C. are only expected to lose about ...
DURHAM, N.C. -- Duke researchers have developed a new method to precisely control when genes are turned on and active.
The new technology allows researchers to turn on specific gene promoters and enhancers -- pieces of the genome that control gene activity -- by chemically manipulating proteins that package DNA. This web of biomolecules that supports and controls gene activity is known as the epigenome.
The researchers say having the ability to steer the epigenome will help them explore the roles that particular promoters and enhancers play in cell fate or the risk ...