PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Molecular cause of heart condition identified by Stanford researchers

2015-06-18
(Press-News.org) In 2012, researchers at the Stanford University School of Medicine showed that heart muscle cells made from the skin of people with a cardiac condition called dilated cardiomyopathy beat with less force than those made from the skin of healthy people. These cells also responded less readily to the waves of calcium that control the timing and strength of each contraction.

Now, the same research team has teased apart the molecular basis for these differences and identified a drug treatment that at least partially restores function to diseased cells grown in a laboratory dish. They also observed how a key cardiac signaling cascade, called the beta-adrenergic pathway, develops as heart muscle cells mature, and identified key aspects about how it functions in both normal and diseased cells.

The researchers hope that the findings will help clinicians better hone treatments for a variety of cardiac conditions, which are now often treated with a one-size-fits-all approach.

'Right now, nearly all patients with cardiomyopathy are given drugs to modulate the beta-adrenergic pathway in the heart, which is known to be dysfunctional,' said Joseph Wu, M.D., Ph.D., director of Stanford's Cardiovascular Institute. 'But until now, we've not known what exactly is going wrong with this pathway at a molecular level.'

A paper describing the research will be published online June 18 in Cell Stem Cell. Wu, a professor of medicine and of radiology, is the senior author of the paper, and postdoctoral scholar Haodi Wu, Ph.D., is the lead author. (Joseph Wu and Haodi Wu are not related.)

Using skin-derived cells to study disease

The research relies on what's known as induced pluripotent stem cells, or iPS cells, to make heart muscle cells from skin. IPS cells can be coaxed to develop into nearly any tissue in the body. The technique gives researchers access to a variety of human cell types, such as brain and heart muscle cells, that are typically difficult to obtain for study.

This study adds to others suggesting that heart muscle cells made from skin cells accurately incorporate the minute details of diseases that afflict those from whom the skin cells were derived.

'We wanted to characterize the mechanisms that underlie the functional impairment of the cells,' said Haodi Wu. 'Until now, we've used iPS-cell-derived heart muscle cells as a disease model for cardiomyopathy, but it's not been known how precisely these cells recapitulate the disease phenotype. Now we see that, although diseased and healthy cells undergo a similar developmental and maturation process, the mutation carried by the diseased cells causes them to respond differently to signaling by the beta-adrenergic pathway.'

Dilated cardiomyopathy occurs when a portion of the heart muscle enlarges and begins to lose the ability to pump blood efficiently. Eventually, the enlarged muscle weakens and fails, requiring either medication or even transplant. Dilated cardiomyopathy can be due to restrictions in blood flow (a condition known as ischemia) that can cause a heart attack, or to nonischemic causes such as viral infection. Although many cases of nonischemic dilated cardiomyopathy occur sporadically and without an apparent cause, dilated cardiomyopathy can also be inherited through a variety of genetic mutations. One of these mutations affects a protein called TNNT2, which is located on the muscle fibers of the heart and helps to regulate their contraction.

The researchers were building upon a 2011 study from the Wu lab published in Science Translational Medicine showing that stem-cell-derived heart muscle cells from people with cardiomyopathy differ in obvious ways from those derived from healthy people. They contract less forcefully and respond less strongly to the beta-adrenergic signaling pathway that increases heart rate and stroke volume and force in response to stress or exercise.

Molecular messengers degraded

Haodi Wu and his colleagues showed that mutated TNNT2 in the cells from patients with dilated cardiomyopathy travels into the cells' nuclei and stimulates chemical tags like methyl groups to attach to DNA and DNA-packaging protein complexes called histones. This process is called epigenomic modification. These modifications work to increase the expression of two genes encoding proteins called phosphodiesterases, which degrade small molecular messengers essential to the beta-adrenergic signaling pathway.

To test their findings, the researchers stimulated iPS-cell-derived heart muscle cells with isoproterenol, which activates the beta-adrenergic pathway. Healthy cells responded vigorously, contracting about 80 percent more quickly and with about 60 percent more force. In contrast, the contraction rate of the diseased cells only increased by about 37 percent, and the force of the contraction remained roughly the same.

'We saw a very dramatic effect in normal cells, but a much smaller functional change in cells made from patients with dilated cardiomyopathy,' said Haodi Wu. 'This is very similar to what we see in human patients. They can have a high blood adrenaline level, but the output of their heart remains weak.'

When the researchers treated the cells with molecules that blocked the function of the phosphodiesterase proteins, diseased cells responded more strongly to isoproterenol treatment, and their contraction rate and force approached that of healthy cells.

'As a cardiologist, I feel this basic research study is very clinically relevant,' said Joseph Wu. 'The beta-adrenergic pathway is a major pharmaceutical target for many cardiac conditions. This study confirms that iPS-cell-derived cardiomyocytes can help us to understand biologically important pathways at a molecular level, and can aid in drug screening. The ability to make a patient's own heart cells for study is the epitome of personalized medicine.'

INFORMATION:

Other Stanford co-authors are postdoctoral scholars Mingxia Gu, Ph.D., Feng Lan, Ph.D., and Jared Churko, Ph.D.; cardiovascular medical fellow Karim Sallam, M.D.; instructor Elena Matsa, Ph.D.; graduate student Arun Sharma; and senior research scientist Joseph Gold, Ph.D.

The work was funded by the American Heart Association and the National Institutes of Health (grants U01HL099776, R01HL113006, R01HL123968 and R24 HL117756).

Information about Stanford's Department of Medicine and the Stanford Cardiovascular Institute, which also supported the work, is available at http://medicine.stanford.edu and http://cvi.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://med.stanford.edu.



ELSE PRESS RELEASES FROM THIS DATE:

Specific roles of adult neural stem cells may be determined before birth

2015-06-18
Adult neural stem cells, which are commonly thought of as having the ability to develop into many type of brain cells, are in reality pre-programmed before birth to make very specific types of neurons, at least in mice, according to a study led by UC San Francisco researchers. "This work fundamentally changes the way we think about stem cells," said principal investigator Arturo Alvarez-Buylla, UCSF professor of neurological surgery, Heather and Melanie Muss Endowed Chair and a principal investigator in the UCSF Brain Tumor Research Center and the Eli and Edythe Broad ...

Changing faces: We can look more trustworthy, but not more competent, NYU research finds

Changing faces: We can look more trustworthy, but not more competent, NYU research finds
2015-06-18
We can alter our facial features in ways that make us look more trustworthy, but don't have the same ability to appear more competent, a team of New York University psychology researchers has found. The study, which appears in the Personality and Social Psychology Bulletin, a SAGE journal, points to both the limits and potential we have in visually representing ourselves--from dating and career-networking sites to social media posts. "Our findings show that facial cues conveying trustworthiness are malleable while facial cues conveying competence and ability are significantly ...

Diet that mimics fasting appears to slow aging

2015-06-18
Want to lose abdominal fat, get smarter and live longer? New research led by USC's Valter Longo shows that periodically adopting a diet that mimics the effects of fasting may yield a wide range of health benefits. In a new study, Longo and his colleagues show that cycles of a four-day low-calorie diet that mimics fasting (FMD) cut visceral belly fat and elevated the number of progenitor and stem cells in several organs of old mice -- including the brain, where it boosted neural regeneration and improved learning and memory. The mouse tests were part of a three-tiered ...

Sequencing Ebola's secrets

2015-06-18
Last June, in the early days of the Ebola outbreak in Western Africa, a team of researchers sequenced the genome of the deadly virus at unprecedented scale and speed. Their findings revealed a number of critical facts as the outbreak was unfolding, including that the virus was being transmitted only by person-to-person contact and that it was picking up new mutations through its many transmissions. While public health officials now believe the worst of the epidemic is behind us, it is not yet over, and questions raised by the previous work still await answers. To ...

Protein 'comet tails' propel cell recycling process

Protein comet tails propel cell recycling process
2015-06-18
PHILADELPHIA - Several well-known neurodegenerative diseases, such as Lou Gehrig's (ALS), Parkinson's, Alzheimer's, and Huntington's disease, all result in part from a defect in autophagy - one way a cell removes and recycles misfolded proteins and pathogens. In a paper published this week in Current Biology, postdoctoral fellow David Kast, PhD, and professor Roberto Dominguez, PhD, and three other colleagues from the Department of Physiology at the Perelman School of Medicine at the University of Pennsylvania, show for the first time that the formation of ephemeral compartments ...

Scientists identify progenitor cells for blood and immune system

2015-06-18
University of California San Francisco scientists have identified characteristics of a family of daughter cells, called MPPs, which are the first to arise from stem cells within bone marrow that generate the entire blood system. The researchers said the discovery raises the possibility that, by manipulating the fates of MPPs or parent stem cells, medical researchers could one day help overcome imbalances and deficiencies that can arise in the blood system due to aging or in patients with specific types of leukemia. Similar imbalances can render patients vulnerable immediately ...

Researchers bring to life proteins' motion

Researchers bring to life proteins motion
2015-06-18
PORTLAND, Ore. -- Advancing the field of structural biology that underpins how things work in a cell, researchers have identified how proteins change their shape when performing specific functions. The study's fresh insights, published online in the journal Structure, provide a more complete picture of how proteins move, laying a foundation of understanding that will help determine the molecular causes of human disease and the development of more potent drug treatments. Though it has long been recognized that proteins are not static, for more than 30 years, scientists' ...

Sequential immunizations could be the key to HIV vaccine

Sequential immunizations could be the key to HIV vaccine
2015-06-18
The secret to preventing HIV infection lies within the human immune system, but the more-than-25-year search has so far failed to yield a vaccine capable of training the body to neutralize the ever-changing virus. New research from The Rockefeller University, and collaborating institutions, suggests no single shot will ever do the trick. Instead, the scientists find, a sequence of immunizations might be the most promising route to an HIV vaccine. Scientists have thought for some time that multiple immunizations, each tailored to specific stages of the immune response, ...

International team discovers new genetic immunodeficiency

2015-06-18
BOSTON, June 18 -- An analysis of five families has revealed a previously unknown genetic immunodeficiency, says an international team led by researchers from Boston Children's Hospital. The condition, linked to mutations in a gene called DOCK2, deactivates many features of the immune system and leaves affected children open to a unique pattern of aggressive, potentially fatal infections early in life. As the researchers -- led by Kerry Dobbs and Luigi Notarangelo, M.D., of Boston Children's Division of Allergy and Immunology -- reported today in the New England Journal ...

Musicians don't just hear in tune, they also see in tune

Musicians dont just hear in tune, they also see in tune
2015-06-18
Musicians don't just hear in tune, they also see in tune. That is the conclusion of the latest scientific experiment designed to puzzle out how the brain creates an apparently seamless view of the external world based on the information it receives from the eyes. "Our brain is remarkably efficient at putting us in touch with objects and events in our visual environment, indeed so good that the process seems automatic and effortless. In fact, the brain is continually operating like a clever detective, using clues to figure out what in the world we are looking at. And ...

LAST 30 PRESS RELEASES:

Astronauts found to process some tasks slower in space, but no signs of permanent cognitive decline

Larger pay increases and better benefits could support teacher retention

Researchers characterize mechanism for regulating orderly zygotic genome activation in early embryos

AI analysis of urine can predict flare up of lung disease a week in advance

New DESI results weigh in on gravity

New DESI data shed light on gravity’s pull in the universe

Boosting WA startups: Report calls for investment in talent, diversity and innovation

New AEM study highlights feasibility of cranial accelerometry device for prehospital detection of large-vessel occlusion stroke

High cardiorespiratory fitness linked to lower risk of dementia

Oral microbiome varies with life stress and mental health symptoms in pregnant women

NFL’s Arizona Cardinals provide 12 schools with CPR resources to improve cardiac emergency outcomes

Northerners, Scots and Irish excel at detecting fake accents to guard against outsiders, Cambridge study suggests

Synchronized movement between robots and humans builds trust, study finds

Global experts make sense of the science shaping public policies worldwide in new International Science Council and Frontiers Policy Labs series

The Wistar Institute and Cameroon researchers reveals HIV latency reversing properties in African plant

$4.5 million Dept. of Education grant to expand mental health services through Binghamton University Community Schools

Thermochemical tech shows promising path for building heat

Four Tufts University faculty are named top researchers in the world

Columbia Aging Center epidemiologist co-authors new report from National Academies on using race and ethnicity in biomedical research

Astronomers discover first pairs of white dwarf and main sequence stars in clusters, shining new light on stellar evolution

C-Path’s TRxA announces $1 million award for drug development project in type 1 diabetes

Changing the definition of cerebral palsy

New research could pave way for vaccine against deadly wildlife disease

Listening for early signs of Alzheimer’s disease #ASA187

Research Spotlight: Gastroenterology education improved through inpatient care teaching model

Texas A&M researchers uncover secrets of horse genetics for conservation, breeding

Bioeconomy in Colombia: The race to save Colombia's vital shellfish

NFL’s Colts bring CPR education to flag football to improve cardiac emergency outcomes

Research: Fitness more important than fatness for a lower risk of premature death

Researchers use biophysics to design new vaccines against RSV and related respiratory viruses

[Press-News.org] Molecular cause of heart condition identified by Stanford researchers