(Press-News.org) Worcester, Mass. - A study by a multidisciplinary research team, co-directed by Worcester Polytechnic Institute (WPI), offers new insights into how virulent fungi adapt through genetic modifications to fight back against the effects of medication designed to block their spread, and how that battle leaves them temporarily weakened. These insights may provide clues to new ways to treat notoriously difficult-to-cure fungal infections like thrush and vaginitis.
The team studied patients infected with the fungus Candida albicans (C. albicans), which causes common yeast infections and more serious bloodstream infections, who were being treated with fluconazole, one of the primary anti-fungal drugs now in use. They found that the fungus undergoes 240 genetic changes associated with drug resistance. But those changes come with a cost, they discovered. As it battles to overcome the effects of the drug, the fungus becomes weaker, with a reduction in the traits associated with virulence. The discoveries may point toward new targets for research and the potential to develop new classes of therapeutics for hard-to-treat fungal infections.
The project was co-directed by Reeta Rao, PhD, associate professor of biology and biotechnology at WPI; Dawn Thompson, PhD, and Aviv Regev, PhD, of the Broad Institute of MIT and Harvard; and Judith Berman, PhD, of Tel Aviv University. They report their findings in the paper "The evolution of drug resistance in clinical isolates of Candida albicans," published by the open-access journal eLife.
"Virtually all humans are colonized with Candida albicans, but in some individuals this benign organism becomes a serious, life-threatening pathogen," the team wrote. "Here, we used genome sequencing of isolates sampled consecutively from patients that were clinically treated with fluconazole to systematically analyze the genetic dynamics that accompany the appearance of drug resistance during oral candidiasis [infection]. Most of the genes in these clusters are not well characterized and represent new candidates involved (in) drug resistance and adaptation to the host environment."
In an accompanying eLife "Insight" piece commenting on the importance of the C. albicans drug resistance study, two researchers from the École Polytechnique Fédérale in Lausanne, Switzerland, wrote: "The work provides a global description of the genetic processes underlying drug resistance and adaptation in C. albicans. Of note, all sequencing data have been made publicly available, which is an unprecedented resource for the research community."
Thrush and vaginitis, common yeast infections caused by C. albicans, typically do not cause serious harm, but can become chronic due to a lack of drugs that can completely clear the pathogen. If a fungal infection spreads to the bloodstream (for example, via catheters or central intravenous lines), it can be deadly. Patients with compromised immune systems or implanted medical devices like pacemakers or prosthetic hips or knees, are also at greater risk for serious systemic fungal infections, which have a mortality rate between 30 and 50 percent.
In the current study, researchers sequenced the DNA and tested samples of C. albicans collected from patients with HIV who also had thrush and were being treated with fluconazole. The "azole" family of drugs do not kill the fungi--they limit growth by disrupting a protein in the yeasts' outer membrane. In many cases, some C. albicans organisms overcome the effects of fluconazole and continue to cause an infection.
Using next-generation DNA sequencing technology, the team looked for changes at the genetic level in 43 samples of C. albicans collected from the 11 patients over ten months. By sampling fungi from the same patients over time, researchers identified genetic mutations that correlated with the fungi's evolving ability to overcome the effects of fluconazole in those patients. The results revealed changes in genes associated with the structure of fungi's outer membrane and the activity of molecular pumps that can eject the drug from the yeast's cells. Numerous other genetic mutations were found to be prevalent as drug resistance increased, though the functional impact of those changes is not known.
The DNA sequencing and genomic analysis was done at the Broad Institute and Tel Aviv University. At WPI, Rao's lab tested the fitness and virulence of the C. albicans strains in the 43 samples. Those experiments found an inverse relationship between increased drug resistance and the ability of C. albicans to survive or cause additional infection. "At first that may seem counterintuitive, but it's actually a logical finding," Rao said. "It shows there is a fitness cost involved in overcoming the effect of the drug. C. albicans devotes more energy to battling the drug, so it becomes less fit and unable to cause infection until it has figured out how to overcome the effect of the drug."
Studying that window of vulnerability, when the fungus is weaker and less likely to cause more infection but not fully resistance to the drug, becomes an interesting opportunity to explore, Rao noted. Also, much more work is needed to understand the specific impact of the 240 genetic mutations found to be associated with drug resistance. Furthermore, understanding how C. albicans evades fluconazole may shed light on how some cancer cells develop resistance to current therapies because "the evolution of drug resistance in C. albicans has many parallels with the somatic evolution of cancer cells undergoing chemotherapy or treated with specific inhibitors," the authors wrote.
INFORMATION:
About Worcester Polytechnic Institute
Founded in 1865 in Worcester, Mass., WPI is one of the nation's first engineering and technology universities. Its 14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, business, the social sciences, and the humanities and arts, leading to bachelor's, master's and doctoral degrees. WPI's talented faculty work with students on interdisciplinary research that seeks solutions to important and socially relevant problems in fields as diverse as the life sciences and bioengineering, energy, information security, materials processing, and robotics. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Perspective Program. There are more than 40 WPI project centers in the Americas, Africa, Asia-Pacific, and Europe.
WASHINGTON (July 6, 2015) -- The investigation of a simple protein has uncovered its uniquely complicated role in the spread of the childhood cancer, osteosarcoma. It turns out the protein, called ezrin, acts like an air traffic controller, coordinating multiple functions within a cancer cell and allowing it to endure stress conditions encountered during metastasis.
It's been known that ezrin is a key regulator of osteosarcoma's spread to the lungs, but its mechanism was not known. Osteosarcoma is a tumor of bone that afflicts children, adolescents and young adults. In ...
Mohamed Boutjdir, PhD, professor of medicine, cell biology, and physiology and pharmacology at SUNY Downstate Medical Center, has led a study with international collaborators identifying the mechanism by which patients with various autoimmune and connective tissue disorders may be at risk for life-threatening cardiac events if they take certain anti-histamine or anti-depressant medications. Dr. Boutjdir is also director of the Cardiac Research Program at VA New York Harbor Healthcare System.
The researchers published their findings in the online edition of the American ...
Investigators have discovered the precise molecular steps that enable immune cells implicated in certain forms of asthma and allergy to develop and survive in the body. The findings from Weill Cornell Medical College reveal a new pathway that scientists could use to develop more effective treatments and therapies for the chronic lung disorder.
More than 1 in 12 Americans are affected by asthma, a disorder characterized by an overactive immune response to normally harmless substances such as pollen or mold. Scientists had previously discovered that an overabundance of ...
Providers of mental-health services still rely on intervention techniques such as physical restraint and confinement to control some psychiatric hospital patients, a practice which can cause harm to both patients and care facilities, according to a new study from the University of Waterloo.
The study, which appears in a special mental health issue of Healthcare Management Forum, found that almost one in four psychiatric patients in Ontario hospitals are restrained using control interventions, such as chairs that prevent rising, wrist restraints, seclusion rooms or acute ...
Older patients with traumatic spinal cord injury are less likely than younger patients to receive surgical treatment and experience a significant lag between injury and surgery, according to new research in CMAJ (Canadian Medical Association Journal)
The number of people with traumatic spinal cord injury over age 70 is increasing, and it is projected that people in this age group will eventually make up the majority of those with new spinal cord injuries. Currently, most spinal cord injuries occur in people aged 16 to 30 years.
To determine whether patients over age ...
Treatment with inhaled nitric oxide (NO) has proven to be life saving in newborns, children and adults with several dangerous conditions, but the availability of the treatment has been limited by the size, weight and complexity of equipment needed to administer the gas and the therapy's high price. Now a research team led by the Massachusetts General Hospital (MGH) physician who pioneered the use of inhaled nitric oxide has developed a lightweight, portable system that produces NO from the air by means of an electrical spark. The investigators describe their invention in ...
CAMBRIDGE, MA -- Nitrous oxide, commonly known as "laughing gas," has been used in anesthesiology practice since the 1800s, but the way it works to create altered states is not well understood. In a study published this week in Clinical Neurophysiology, MIT researchers reveal some key brainwave changes among patients receiving the drug.
For a period of about three minutes after the administration of nitrous oxide at anesthetic doses, electroencephalogram (EEG) recordings show large-amplitude slow-delta waves, a powerful pattern of electrical firing that sweeps across ...
The human organism contains hundreds of distinct cell types that often differ from their neighbours in shape and function. To acquire and maintain its characteristic features, each cell type must express a unique subset of genes. Neurons, the functional units of our brain, develop through differentiation of neuronal precursors, a process that depends on coordinated activation of hundreds and possibly thousands of neuron-specific genes.
A new study published in Nature Communications by researchers from the MRC Centre for Developmental Neurobiology (MRC CDN) at IoPPN, carried ...
Intermittent dosing with rapamycin selectively breaks the cascade of inflammatory events that follow cellular senescence, a phenomena in which cells cease to divide in response to DNA damaging agents, including many chemotherapies. The finding, published in Nature Cell Biology, shows that once disrupted, it takes time for the inflammatory loop to reestablish, providing proof-of-principal that intermittent dosing could provide a way to reap the benefits of rapamycin, an FDA-approved drug that extends lifespan and healthspan in mice, while lessening safety issues associated ...
Carrying around a spare tire is a good thing -- you never know when you'll get a flat. Turns out we're all carrying around "spare tires" in our genomes, too. Today, in ACS Central Science, researchers report that an extra set of guanines (or "G"s) in our DNA may function just like a "spare" to help prevent many cancers from developing.
Various kinds of damage can happen to DNA, making it unstable, which is a hallmark of cancer. One common way that our genetic material can be harmed is from a phenomenon called oxidative stress. When our bodies process certain chemicals ...