PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Core design strategy for fire-resistant batteries

Development of a strategy for reducing 'electrolyte-electrode interface resistance,' which limits the commercialization of all-solid-state batteries; new material design strategy to increase performance by improving the cathode material

Core design strategy for fire-resistant batteries
2021-01-11
(Press-News.org) All-solid-state batteries are the next-generation batteries that can simultaneously improve the stability and capacity of existing lithium batteries. The use of non-flammable solid cathodes and electrolytes in such batteries considerably reduces the risk of exploding or catching fire under high temperatures or external impact and facilitates high energy density, which is twice that of lithium batteries. All-solid-state batteries are expected to become a game changer in the electric vehicle and energy storage device markets. Despite these advantages, the low ionic conductivity of solid electrolytes combined with their high interfacial resistance and rapid deterioration reduce battery performance and life, thus limiting their commercialization.

The Korea Institute of Science and Technology (KIST) is proud to announce that the research team of Dr. Sang-baek Park at the Center for Energy Materials Research, in collaboration with the research team of Professor Hyun-jung Shin of Sungkyunkwan University, has developed a breakthrough material design strategy that can overcome the problem of high interfacial resistance between the solid electrolyte and the cathode, which is an obstacle to the commercialization of all-solid-state batteries.

Unique physical phenomena occur at the interface where two different substances meet. Unlike the atoms inside the bulk of a substance, which hold hands with other atoms around themselves and form stable bonds, the atoms at the interface, having no neighboring atom of the same substance on one side, are likely to form a different atomic arrangement.

In all-solid-state batteries having a solid electrode-solid electrolyte interface, a phenomenon occurs that disturbs the atomic arrangement and limits charge transfer, thereby increasing resistance and accelerating deterioration. Methods of coating an appropriate material on the surface of the cathode and the electrolyte or inserting an intermediate layer are currently being studied to solve the above-mentioned problem. However, this further increases the costs and lowers the overall activity and energy density of the batteries.

In order to solve these problems, the KIST-Sungkyunkwan University joint research team first systematically identified the crystal structure of the material that directly affects the solid interface. Using epitaxial film technology (a semiconductor manufacturing technology) to grow a thin film along the direction in which the crystals of the substrate were formed, cathode films having different exposed crystal planes were obtained under varying conditions. The effect of the exposed crystal plane on the interface between the solid electrolyte and the cathode material was analyzed in detail, disregarding other factors such as particle size and contact area that could affect the result.

The results indicated that the leakage of the transition metal from the cathode material into the electrolyte was suppressed by the closely-packed structure of the exposed crystal plane, which improved the stability of the all-solid-state battery. In addition, when the interface of the crystals was arranged in parallel with the direction of movement of the electrons, the movement of ions and electrons along the crystals was not hindered, resulting in reduced resistance and improved output.

"This means that improving the cathode material itself by increasing the density of the crystal plane and adjusting the direction of the interface between the crystals can ensure high performance and stability," said Dr. Sang-baek Park, KIST. "We plan to accelerate the development of all-solid-state battery materials by overcoming the instability of the solid electrolyte and solid cathode interface and imparting improved ion-charge exchange characteristics through this study, which has investigated the mechanism of all-solid-state battery degradation."

INFORMATION:

This research was carried out as a major project of KIST with the support of the Ministry of Science and ICT (MSIT). The results of this study were published in the latest issue of "Nano Energy" (IF: 16.602, the highest rating of 4.299% by JCR), an international journal in the field of nanotechnology.


[Attachments] See images for this press release:
Core design strategy for fire-resistant batteries

ELSE PRESS RELEASES FROM THIS DATE:

Acta Pharmaceutica Sinica B volume 10, issue 11 publishes

<i>Acta Pharmaceutica Sinica B</i> volume 10, issue 11 publishes
2021-01-11
Special Issue: Tumor Microenvironment and Drug Delivery Guest Editors: Huile Gao, West China School of Pharmacy, Sichuan University, Chengdu, China; Zhiqing Pang, Fudan University, Shanghai, China and Wei He, China Pharmaceutical University, Nanjing, China The Journal of the Institute of Materia Medica, the Chinese Academy of Medical Sciences and the Chinese Pharmaceutical Association, Acta Pharmaceutica Sinica B (APSB) is a monthly journal, in English, which publishes significant original research articles, rapid communications and high quality reviews of recent advances in all areas of pharmaceutical sciences -- including pharmacology, pharmaceutics, medicinal chemistry, natural products, ...

Acta Pharmaceutica Sinica B volume 10, issue 12 publishes

<i>Acta Pharmaceutica Sinica B</i> volume 10, issue 12 publishes
2021-01-11
The Journal of the Institute of Materia Medica, the Chinese Academy of Medical Sciences and the Chinese Pharmaceutical Association, Acta Pharmaceutica Sinica B (APSB) is a monthly journal, in English, which publishes significant original research articles, rapid communications and high quality reviews of recent advances in all areas of pharmaceutical sciences -- including pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis and pharmacokinetics. Featured papers in this issue are: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5 by authors Yang Liu, Xiaojia Liu, Na Zhang, Mingxiao Yin, Jingwen Dong, Qingxuan ...

Breakthrough on diarrhea virus opens up for new vaccines

Breakthrough on diarrhea virus opens up for new vaccines
2021-01-11
"The findings provide an increased understanding of how the virus gets through the stomach and intestinal system. Continued research can provide answers to whether this property can also be used to create vaccines that ride 'free rides' and thus be given in edible form instead of as syringes," says Lars-Anders Carlson, researcher at Umeå University. The virus that the researchers have studied is a so-called enteric adenovirus. It has recently been clarified that enteric adenoviruses are one of the most important factors behind diarrhea among infants, and they are estimated to kill more than 50,000 children under the age of five each year, ...

Discovery pinpoints new therapeutic target for atopic dermatitis

Discovery pinpoints new therapeutic target for atopic dermatitis
2021-01-11
Researchers from Trinity College Dublin have discovered a key mechanism underlying bacterial skin colonisation in atopic dermatitis, which affects millions around the globe. Atopic dermatitis (AD, also called commonly eczema) is the most common chronic inflammatory skin disorder in children, affecting 15-20% of people in childhood. During disease flares, patients experience painful inflamed skin lesions accompanied by intense itch and recurrent skin infection. The bacterium Staphylococcus aureus (S. aureus) thrives on skin affected by AD, increasing inflammation and worsening AD symptoms. Although a small number of therapies are available at present for patients with moderate ...

Research shapes safe dentistry during Covid-19

Research shapes safe dentistry during Covid-19
2021-01-11
Leading research at Newcastle University has been used to shape how dentistry can be carried out safely during the Covid-19 pandemic by mitigating the risks of dental aerosols. It is well known that coronavirus can spread in airborne particles, moving around rooms to infect people, and this has been a major consideration when looking into patient and clinician safety. Research, published in the Journal of Dentistry, has led the way in helping shape national clinical guidance for the profession to work effectively under extremely challenging circumstances. The findings have been used by the Dental Schools' Council, Association of Dental Hospitals and the Scottish Dental Clinical Effectiveness ...

Tasmanian tiger pups found to be extraordinarily similar to wolf pups

Tasmanian tiger pups found to be extraordinarily similar to wolf pups
2021-01-11
Micro-CT scanning and digital reconstructions have been used to compare the skulls of the Tasmanian tiger (thylacine) and wolf across their early development and into adulthood, establishing that not only did the thylacine resemble the wolf as adults, but also as newborns and juveniles. "Remarkably, the Tasmanian tiger pups were more similar to wolf pups than to other closely related marsupials," Professor Andrew Pask from the University of Melbourne said. The collaborative study with Flinders University and Museums Victoria complement earlier findings that thylacine and wolf have evolved ...

Accelerating AI computing to the speed of light

2021-01-11
Artificial intelligence and machine learning are already an integral part of our everyday lives online. For example, search engines such as Google use intelligent ranking algorithms and video streaming services such as Netflix use machine learning to personalize movie recommendations. As the demands for AI online continue to grow, so does the need to speed up AI performance and find ways to reduce its energy consumption. Now a University of Washington-led team has come up with a system that could help: an optical computing core prototype that uses phase-change material. This system is fast, energy efficient and capable of accelerating ...

A charge-density-wave topological semimetal

A charge-density-wave topological semimetal
2021-01-11
Topological materials are characterised by unique electronic and physical properties that are determined by the underlying topology of their electronic systems. Scientists from the Max Planck Institutes for Microstructure Physics (Halle) and for Chemical Physics of Solids (Dresden) have now discovered that (TaSe4)2I is the first material in which a charge density wave induces a phase transition between the semimetal to insulator state. An international team of scientists at the Max Planck Institute for Microstructure Physics, Halle (Saale), the Max Planck Institute for Chemical Physics of Solids ...

Confined growth of ZIF-8 in organosilica nanoparticles to regulate mRNA translation

Confined growth of ZIF-8 in organosilica nanoparticles to regulate mRNA translation
2021-01-11
Delivery of genetic molecules such as mRNA into cells is vital with important applications such as vaccine development. Various agents have been developed for mRNA delivery. However, conventional mRNA nanocarriers mainly focus on their physical interaction with mRNA molecules, or protection / delivery of mRNA, such as adjusting physical properties of nanocarriers to control binding with mRNA or cellular uptake. Moreover, effective mRNA delivery in hard-to-transfect APCs remains a challenge. The hard-to-transfect nature in APCs is partly attributed to the suppressed mRNA translation associated with the intrinsic high intracellular glutathione (GSH) level. Thus, ...

Expanding the boundaries of CO2 fixation

Expanding the boundaries of CO2 fixation
2021-01-11
Photorespiration is a highly energy consuming process in plants that leads to the release of previously fixed CO2. Thus, engineering this metabolic process is a key approach for improvement of crop yield and for meeting the challenge of ever-rising CO2 levels in the atmosphere. Researchers led by Tobias Erb from the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany, have now succeeded in engineering the TaCo pathway, a synthetic photorespiratory bypass. This new-to-nature metabolic connection opens up new possibilities of CO2 fixation ...

LAST 30 PRESS RELEASES:

Evolution of fast-growing fish-eating herring in the Baltic Sea

Cryptographic protocol enables secure data sharing in the floating wind energy sector

Can drinking coffee or tea help prevent head and neck cancer?

Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

[Press-News.org] Core design strategy for fire-resistant batteries
Development of a strategy for reducing 'electrolyte-electrode interface resistance,' which limits the commercialization of all-solid-state batteries; new material design strategy to increase performance by improving the cathode material