PRESS-NEWS.org - Press Release Distribution
FREE PRESS RELEASES DISTRIBUTION

Scientists streamline process for controlling spin dynamics

Researchers discovered the thickness of magnetic materials can act as a "knob" for fine-tuning spin dynamics, a key property for developing next-generation electronics

Scientists streamline process for controlling spin dynamics
2021-01-19
(Press-News.org) UPTON, NY--Marking a major achievement in the field of spintronics, researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published today in Nature Materials, could lead to smaller, more energy-efficient electronic devices.

"Instead of searching for different materials that share the right frequencies, we can now alter the thickness of a single material--iron, in this case--to find a magnetic medium that will enable the transfer of information across a device," said Brookhaven physicist and principal investigator Valentina Bisogni.

Traditional electronics rely on a fundamental property of electrons--charge--to transmit information. But as electrical current flows throughout a device, it dissipates heat, limiting how small devices can be designed without the risk of overheating and sacrificing performance. To meet the demand for smaller and more advanced electronics, researchers are looking into an alternative approach based on a different fundamental property of electrons--spin. Similar to charge, spin can move throughout a material like a current. The difference is that a charge current is comprised of electrons that physically move, whereas in a spin "current," the electrons do not move; rather, they hand over their spin direction to each other like passing a baton in a relay race--one that has a long chain of "runners" who never actually run.

"There is always a need for more memory or storage capacity in electronic devices, and heat dissipation is currently impeding us from creating devices on a smaller scale," Bisogni said. "Relying on spin instead of charge significantly reduces overheating in devices, so the goal of spintronics is to realize the same device functionalities, or better, that are already known in traditional electronics--without the drawbacks."

To date, spin dynamics have typically been measured using neutron scattering techniques; however, this method requires samples to be studied in bulk (multiple grams of sample at once). In real-world applications, the material must be scaled down to much smaller sizes.

"It is very difficult to predict how certain materials will perform at different length scales," Bisogni said. "Given that many electronic devices consist of a very small amount of material, it is important to study how the properties in a thin film compare to the bulk."

To address this scientific question, the research team used a technique called resonant inelastic x-ray scattering (RIXS) to study thin films of iron as thin as one nanometer. Though RIXS is well-established in the scientific field, this study is only one of a few examples where researchers have used this technique to study spin dynamics in such a thin material. The achievement was made possible by the advanced capabilities of the Soft Inelastic X-ray Scattering (SIX) beamline at the National Synchrotron Light Source II (NSLS-II)--a DOE Office of Science User Facility at Brookhaven National Laboratory.

"We were able to perform these measurements by combining the ultrabright x-ray source at NSLS-II with the unparalleled energy resolution and spectrometer at the SIX beamline," said Jonathan Pelliciari, lead author of the study and a scientist at SIX.

The SIX beamline is equipped with a 50-foot-long spectrometer arm, housed in its own building adjacent to NSLS-II's experimental floor. This long, movable arm enables SIX to obtain an extremely high energy resolution and reveal the collective motion of electrons and their spin within a material.

First studying iron in bulk, the research team confirmed results from previous neutron scattering techniques. Then, as they moved towards thinner materials, they not only successfully observed spin dynamics at the atomic scale, but also discovered thickness could act as a "knob" for fine-tuning and controlling spin dynamics.

"It was exciting to see the way in which iron maintained its ferromagnetic properties from the bulk to just a few monolayers," said Bisogni, lead beamline scientist at SIX. "With iron being such an elemental and simple material, we consider this to be a benchmark case for studying the evolution of properties as a function of thickness using RIXS."

Pelliciari added, "This work is the result of a strong synergy between world-class facilities. In addition to the high-level experiment and characterization study done at NSLS-II, this research would not have been possible without the expertise and state-of-the-art synthesis capabilities from our colleagues at Yale University."

"Because Yale is only two hours away from NSLS-II, I was able to fully participate in the experiment," said Sangjae Lee, a graduate student in Charles Ahn lab at Yale University. Lee and Ahn are co-authors of the study. "This experiment was an inspiring opportunity to perform hands-on synchrotron measurements with world-class scientists at NSLS-II."

Researchers in Brookhaven's condensed matter physics and materials science department also provided theory support for the best interpretation of the experimental data.

The research team at SIX will continue to use RIXS to observe material properties related to spintronics. Their ultimate goal is to develop an "on or off switch" for controlling spin dynamics in devices and understand the underlying microscopic mechanism.

INFORMATION:

This study was supported by DOE's Office of Science.

Brookhaven National Laboratory is supported by the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Follow @BrookhavenLab on Twitter or find us on Facebook.


[Attachments] See images for this press release:
Scientists streamline process for controlling spin dynamics

ELSE PRESS RELEASES FROM THIS DATE:

Researchers discover potential new therapy for chemotherapy-resistant breast cancer

2021-01-19
Scientists have discovered a molecule that can selectively kill cells of a hard-to-treat subtype of breast cancer, which could lead to a new therapy. The study, led by researchers at RCSI University of Medicine and Health Sciences, is published in the current edition of Science Advances. Triple negative breast cancer is a subtype of breast cancer which is mainly treated with chemotherapy. Unfortunately, up to 70% of patients with this form of breast cancer develop resistance to treatment. The researchers tested different molecules to see if they could selectively kill the cells of this type of breast cancer while sparing normal ...

As the American hemp industry grows, so does our understanding of hemp diseases

As the American hemp industry grows, so does our understanding of hemp diseases
2021-01-19
As hemp begins to reemerge as an important crop in the United States, scientists are beginning research into the diseases that might prevent the crop from flourishing. A study published in the December issue of Plant Health Progress is one of the first to study the potential disease and disorder limitations for hemp production in the southeastern United States. Lindsey Thiessen, a plant pathologist at North Carolina State University, worked with colleagues to evaluate hemp samples from North Carolina and observed 16 different diseases. They found Fusarium flower blight most consistently followed by Helminthosporium ...

UN disaster aid is driven by humanitarian need rather than by strategic donor interests

UN disaster aid is driven by humanitarian need rather than by strategic donor interests
2021-01-19
A new study published in PNAS finds that aid provided by the United Nations (UN) in the aftermath of climate-related disasters is driven by humanitarian need rather than by strategic donor interests. The results underline the importance of climate-related hazards for understanding aid disbursements. The study 'Humanitarian need drives multilateral disaster aid' provides the first estimation of UN climate-related disaster aid worldwide. Although it cannot be entirely ruled out that powerful donor states' interests shape UN aid flows, the UN seems able to fend off donor states' strategic ...

A trap for nematodes

A trap for nematodes
2021-01-19
Filariae, slender but sometimes up to 70 centimeters long nematodes, can set up residence in their host quite tenaciously and cause serious infectious diseases in the tropics. The tiny larvae of the worms are usually transmitted from person to person by mosquitoes, which pick up the larvae from the blood or subcutaneous tissue when they bite and deposit them in the vessels or tissues of their next victim. Researchers led by the University of Bonn (Germany) have now investigated a mechanism by which the immune system attacks the filariae. Certain immune cells, the eosinophil granulocytes, release DNA that forms a kind of web around the larvae and traps them. The researchers ...

Increased blood flow during sleep tied to critical brain function

2021-01-19
Our brains experience significant changes in blood flow and neural activity during sleep, according to Penn State researchers. Such changes may help to clean out metabolic brain waste that builds up during the day. "We studied the sleep patterns of mice during both rapid eye movement and non-rapid eye movement sleep stages, as well as in different alertness states," said Patrick Drew, Huck Distinguished Associate Professor of Engineering Science and Mechanics, Neurosurgery and Biomedical Engineering. Mice were chosen for the study because of their brains' remarkable similarity with human brains, said the researchers. In both mice and humans, non-REM sleep ...

RUDN University and RLT scientists: Light, magnetic field, and ultrasound could help fight COVID-19

RUDN University and RLT scientists: Light, magnetic field, and ultrasound could help fight COVID-19
2021-01-19
A team of researchers from RUDN University and RLT suggested restoring normal levels of lymphocytes in patients with COVID-19 and other viral diseases by subjecting them to the combined influence of light, magnetic field, and ultrasound. The results of the study were published in the Journal of Photochemistry and Photobiology B: Biology. Some COVID-19 patients are asymptomatic, while others suffer from complications. To effectively fight coronavirus with drugs and therapeutic methods, scientists and medics have to find out what causes these differences in the course of the disease. A team of scientists from RUDN University together with their colleagues from the international company Radiant Life Technologies (RLT) suggested that the reason might ...

A mathematical study describes how metastasis starts

A mathematical study describes how metastasis starts
2021-01-19
A scientific study carried out by the Universidad Carlos III de Madrid (UC3M) and the Universidad Complutense de Madrid (UCM) has produced a mathematical description of the way in which a tumor invades the epithelial cells and automatically quantifies the progression of the tumor and the remaining cell islands after its progression. The model developed by these researchers could be used to better understand the biophysical characteristics of the cells involved when developing new treatments for wound healing, organ regeneration, or cancer progression. This research analyses the collective ...

Who's writing open access articles?

2021-01-19
An Academic Analytics Research Center (AARC) study has found greater rates of authorship of open access (OA) research articles among scholars at more prestigious institutions with greater access to resources and job security. "The open access publishing model is growing, and open access successfully democratizes the results of research projects, but it's clear now that some scholars are more likely to be represented in the open access literature" said AARC director and lead author of the study Anthony Olejniczak, Ph.D. The researchers analyzed characteristics of 182,320 open access authors at American research universities from 2014 through 2018. The study ...

Gene-editing 'scissor' tool may also be a 'dimmer switch'

Gene-editing scissor tool may also be a dimmer switch
2021-01-19
In a series of experiments with laboratory-cultured bacteria, Johns Hopkins scientists have found evidence that there is a second role for the widely used gene-cutting system CRISPR-Cas9 -- as a genetic dimmer switch for CRISPR-Cas9 genes. Its role of dialing down or dimming CRISPR-Cas9 activity may help scientists develop new ways to genetically engineer cells for research purposes. A summary of the findings was published Jan. 8 in Cell. First identified in the genome of gut bacteria in 1987, CRISPR-Cas9 is a naturally occurring but unusual group of genes with a potential for cutting DNA sequences in ...

Nonsurgical treatment for cerebral infarction using wearable wireless ultrasound devices

Nonsurgical treatment for cerebral infarction using wearable wireless ultrasound devices
2021-01-19
Cerebral infarction, commonly known as ischemic stroke, has a high mortality rate and causes severe damage to nervous cells in the brain owing to the loss of oxygen, which results in limiting body movements. Several technologies, including physiotherapy and brain stimulation techniques, are being developed and tested for the rehabilitation of brain nervous cells damaged by a stroke. In particular, low-intensity focused ultrasound is expected to be effective for rehabilitating neurological diseases such as stroke, as it can excite or inhibit nerve cells by delivering mechanical energy with high precision at the desired position, while ultrasound is penetrating the cranium without requiring a surgical operation. Korea Institute of Science and Technology (KIST) announced that the research ...

LAST 30 PRESS RELEASES:

Scientists model 'true prevalence' of COVID-19 throughout pandemic

New breakthrough to help immune systems in the fight against cancer

Through the thin-film glass, researchers spot a new liquid phase

Administering opioids to pregnant mice alters behavior and gene expression in offspring

Brain's 'memory center' needed to recognize image sequences but not single sights

Safety of second dose of mRNA COVID-19 vaccines after first-dose allergic reactions

Changes in disparities in access to care, health after Medicare eligibility

Use of high-risk medications among lonely older adults

65+ and lonely? Don't talk to your doctor about another prescription

Exosome formulation developed to deliver antibodies for choroidal neovascularization therapy

Second COVID-19 mRNA vaccine dose found safe following allergic reactions to first dose

Plant root-associated bacteria preferentially colonize their native host-plant roots

Rare inherited variants in previously unsuspected genes may confer significant risk for autism

International experts call for a unified public health response to NAFLD and NASH epidemic

International collaboration of scientists rewrite the rulebook of flowering plant genetics

Improving air quality reduces dementia risk, multiple studies suggest

Misplaced trust: When trust in science fosters pseudoscience

Two types of blood pressure meds prevent heart events equally, but side effects differ

New statement provides path to include ethnicity, ancestry, race in genomic research

Among effective antihypertensive drugs, less popular choice is slightly safer

Juicy past of favorite Okinawan fruit revealed

Anticipate a resurgence of respiratory viruses in young children

Anxiety, depression, burnout rising as college students prepare to return to campus

Goal-setting and positive parent-child relationships reduce risk of youth vaping

New research identifies cancer types with little survival improvements in adolescents and young adul

Oncotarget: Replication-stress sensitivity in breast cancer cells

Oncotarget: TERT and its binding protein: overexpression of GABPA/B in gliomas

Development of a novel technology to check body temperature with smartphone camera

The mechanics of puncture finally explained

Extreme heat, dry summers main cause of tree death in Colorado's subalpine forests

[Press-News.org] Scientists streamline process for controlling spin dynamics
Researchers discovered the thickness of magnetic materials can act as a "knob" for fine-tuning spin dynamics, a key property for developing next-generation electronics