PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

How cells 'eat' their own fluid components

How cells 'eat' their own fluid components
2021-01-21
(Press-News.org) Autophagy is a fundamental cellular process by which cells capture and degrade their own dysfunctional or superfluous components for degradation and recycling. Recent research has revealed that phase separated droplets have a range of important functions in cells. An international collaboration between German, Norwegian, and Japanese researchers has unravelled the mechanisms underpinning both how these droplets are captured through autophagy, as well as how droplets can serve as a platform from which structures facilitating cytosolic autophagy arise.

Two worlds meet

Autophagy[1], a critical intracellular degradation pathway that plays a key role in human health, has attracted the attention of cell biologists for decades, culminating in the award of the 2016 Nobel Prize in Physiology or Medicine to Tokyo Institute of Technology (Tokyo Tech) Specially Appointed Professor Yoshinori Ohsumi in 2016 for his work uncovering the mechanisms of this process. Recently, the autophagy has been observed to degrade fluid droplets[2], which are formed by phase separation and have been identified as important structural components of cells in rapidly progressing research. But how this 'eating' of fluid droplets occurs is unknown.

This simple but important question prompted Dr Roland Knorr at the University of Tokyo to assemble an international team of researchers from Göttingen (Germany), Oslo (Norway), and Tokyo (Japan), including Dr Alexander I. May from the Institute of Innovate Research at Tokyo Tech. This group set out to understand the biological process of autophagosomal droplet sequestration, discovering that an intricate physical mechanism underlies the relationship between autophagy and droplets. Their results, published in this week's issue of Nature, represent a major breakthrough in our understanding of how autophagy captures cellular material and how droplets are degraded in cells. These findings promise to inform therapeutic studies targeting autophagy and the abnormal accumulation of droplet materials observed in neurodegenerative and other diseases.

One bite at a time

In the first step of autophagy, the isolation membrane, a key functional structure of autophagy made up of a double-layered lipid membrane shaped somewhat like a flattened tennis ball, grows in size, bends to form a cup-like shape and ultimately forms a spherical structure known as the autophagosome. Autophagosomes capture cytosolic and other cellular material such as droplets, isolating this cargo from the rest of the cytosol, following which the cargo is broken down and its building blocks recycled by the cell. The researchers focused on the isolation of droplets, which they found can be understood in terms of surprisingly simple and fundamental physical principles.

Droplets are spherical due to the effect of surface tension, which acts to minimize a droplet's surface area. How strongly a droplet can resist deformations from a spherical shape is defined by the droplet's surface tension[3], the value of which reflects how strongly the droplet and the surrounding cytosol repel each other. Critically, lipid membranes are able to sit at the interface between the droplet and cytosolic fluids, a phenomenon known as wetting. Wetting depends on how strong a membrane favours interaction with the droplet and the cytosol, as well as the droplet surface tension.

The researchers developed a theoretical model that accounts for these physical forces to explain how autophagy membranes interact with and capture droplets. They found that the shape of the droplet-isolation membrane pair is governed by a competition between the droplet's resistance to deform and the tendency of the isolation membrane to bend. Dr. May explains how physical forces determine the outcome of the droplet-isolation membrane interactions: "During the initial phase of autophagy, isolation membranes on droplets are small, which means they only have a weak tendency to bend. As the membrane area grows, however, these membranes become more likely to bend - the bending energy increases. The droplet's surface tension defines its resistance to deformation, and if the surface tension is low enough a critical point can be reached where the bending energy of the isolation overcomes the droplet's surface tension. In this case, a piece of the droplet is 'bitten off' and captured within an autophagosome. If this critical point is never reached and the surface tension of the droplet 'wins' this competition by overcoming the membrane bending energy, the isolation membrane will continue to grow along the droplet surface, eventually engulfing the entire droplet. Droplet autophagy can therefore be thought of as a sort of tug-of-war between the droplet's surface tension and the isolation membrane's bending energy."

With the model predicting this trade-off between 'piecemeal' and 'complete' autophagy, the team set out to confirm these findings in living cells. The researchers used a cutting-edge combination of fluorescence and electron microscopy to follow droplet compartments that enrich a protein called p62 or SQSTM1[4]. As predicted by modelling of low surface tension droplet conditions, the localisation of small isolation membranes to the droplet surface was followed by the 'biting off' of pieces of droplet. But the team needed to develop an innovative means of controlling droplet surface tension to confirm the influence of droplet properties on sequestration.

Autophagy on demand

To address this question, the researchers devised a minimal synthetic experimental system that eliminates the complexity of the intracellular environment. Using this approach, they observed the self-assembly of isolation membrane-like structures from pre-existing membranes on the surface of droplets with high surface tension. The tuneable nature of this experimental setup allowed the researchers to decrease droplet surface tension, thereby testing what effect this has on droplet capture. As predicted by the model, they observed that flattened isolation membranes transform via an intermediate cup-like shape into an autophagosome-like structure, thereby taking a bite from the droplet. Together, these results confirm the veracity of the model and demonstrate that wetting is the physical mechanism governing autophagosome formation at droplets.

These results indicate that biologists are still exploring only the tip of the iceberg when it comes to the significance of phase separation in autophagy. Intriguingly, another study published in Nature last year that was co-authored by Dr. Ohsumi, Dr. Knorr and Dr. May showed that the site of autophagosome formation in yeast cells is in fact a fluid droplet that is never captured. Dr. Knorr remarks: "I was very fascinated to discover droplets being a novel key autophagy structure. Now, we wanted to understand the mechanism behind our observation that some types of droplets are degraded by autophagosomes, such as p62, but others not, including the site of autophagosome formation."

Switching things up

The simple competition between isolation membrane bending and droplet surface tension described above assumes that the properties of the isolation membrane aren't altered when it sticks to the droplet surface. This is unlikely as each side of the isolation membrane wets two very different fluids during droplet autophagy: the droplet or the cytosol. The team expanded on their model to account for this, finding that such wetting-derived intrinsic asymmetry of isolation membranes determines bending direction and thereby the material captured for degradation: either the droplet via the piecemeal pathway, or the cytosol through the growth of the isolation membrane away from the droplet. The upshot of this is that the particular combination of isolation membranes, droplet properties and cytosolic state combine to specify the droplet as a target for autophagy or, counterintuitively, as a platform that enables autophagy of the surrounding cytosol.

To test this, the researchers modified the p62 protein to lack a specific motif that is known to interact with the proteins in the isolation membrane, thereby weakening the isolation membrane-droplet association. This manipulation had a radical effect: while isolation membranes were initially observed to grow along p62 droplets in wild-type (unmodified) cells, they instead bent to capture cytosol, leaving the droplet completely intact. Tiny changes in droplet properties therefore have critical implications for the mode of autophagy in living cells, specifying piecemeal or complete enclosure of droplets, and even the capture of cytosolic material.

Elucidation of the underlying physical rationale that enables this switch provides an entirely new perspective in our understanding of the mechanism of autophagy, as well as the role of droplets and physical principles such as wetting in cells. This understanding lays the groundwork for a host of new studies on the implications of physical forces in cell biology, as well as providing new clues that will help understand how autophagy is involved in diseases that are not easily treated, such as neurodegenerative diseases and cancer.

INFORMATION:

Footnotes

[1] Autophagy is an important intracellular degradation pathway that has been linked to many important processes in healthy cells, such as ensuring reliable supply of metabolite concentrations, starvation responses and maintenance of the cell's population of organelles. The disruption of autophagy is associated with diseases including infections, neurodegenerative diseases and cancer. Gaining a detailed understanding of how autophagy occurs in cells therefore promises novel means of addressing human diseases.

[2] Droplets, also known as 'membrane-less organelles,' are condensates of proteins that form by phase separation-like processes. These structures lack a limiting membrane, therefore behaving as a dynamic yet discrete fluid in the cytosol (the cell's interior solution), akin to droplets of oil in water. Droplets have recently attracted a lot of research attention due to their increasingly recognised physiological importance, but the question of how they are degraded or dissociate is only poorly understood.

[3] Surface tension is a force that causes the surface of liquids, including fluid droplets in cells, to minimise their surface area. In physical terms, a liquid's surface tension is characterised by a value that depends on the properties of the liquid and its surrounding material.

[4] p62/SQSTM1 is a protein that is degraded by autophagy. It acts as an adaptor protein by binding to other cellular proteins through a region known as the LC3-interacting region (LIR), thereby allowing for the degradation of these proteins by autophagy. p62/SQSTM1 is known to form droplets in cells that can mature into relatively inert aggregations associated with neurodegenerative disease. Related links

Amino Acid Recycling in Cells: Autophagy Helps Cells Adapt to Changing Conditions
https://www.titech.ac.jp/english/news/2020/048501.html

Tokyo Tech launches new edX MOOC on Autophagy
https://www.titech.ac.jp/english/news/2017/039624.html

Alexander I. May | Tokyo Tech World Research Hub Initiative
https://www.wrhi.iir.titech.ac.jp/en/people/may-alexander/

About Tokyo Institute of Technology Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of "monotsukuri," meaning "technical ingenuity and innovation," the Tokyo Tech community strives to contribute to society through high-impact research. https://www.titech.ac.jp/english/


[Attachments] See images for this press release:
How cells 'eat' their own fluid components

ELSE PRESS RELEASES FROM THIS DATE:

Common pesticides stop bees and flies from getting a good night's sleep

2021-01-21
Just like us, many insects need a decent night's sleep to function properly, but this might not be possible if they have been exposed to neonicotinoid insecticides, the most common form of insecticide used worldwide, suggests research by academics at the University of Bristol. Two studies by scientists at Bristol's Schools of Physiology, Pharmacology and Neuroscience and Biological Sciences have shown these insecticides affect the amount of sleep taken by both bumblebees and fruit flies, which may help us understand why insect pollinators are vanishing from the wild. Dr Kiah Tasman, Teaching Associate in the School of Physiology, ...

Study pins down number of Americans with most common form of lupus

2021-01-21
Just over 200,000 Americans suffer from systemic lupus erythematosus, or SLE, a condition in which the body's immune system mistakenly attacks its own healthy tissues, especially joints and skin, a new study shows. Led by a researcher at NYU Grossman School of the Medicine, the study provides the first national estimate of how widespread the autoimmune disease is since the U.S. Centers for Disease Control and Prevention (CDC) set up a half dozen state registries to track the illness more than a decade ago. SLE affects mostly women, can be fatal, and often involves debilitating flare-ups of fatigue and pain that keep nearly ...

Patients in cancer remission at high risk for severe COVID-19 illness

2021-01-21
PHILADELPHIA--Patients with inactive cancer and not currently undergoing treatments also face a significantly higher risk of severe illness from COVID-19, a new study from Penn Medicine published online today in JNCI Cancer Spectrum shows. Past reports have established an increased risk of severe disease and death for sick or hospitalized cancer patients with COVID-19 compared to patients without cancer, but less is known about patients in the general population. The findings underscore the importance of COVID-19 mitigation, like social distancing and mask wearing, and vaccinations for all patients, not just those recently diagnosed or with active disease. "Patients who have cancer need to be careful ...

Research finds people more likely to follow Covid rules when friends and family do

2021-01-21
New research has shown that people are more likely to follow Covid-19 restrictions based on what their friends do, rather than their own principles. Research led by the University of Nottingham carried out in partnership with experts in collective behaviour from British, French, German and American universities shows how social influence affects people's adherance to government restrictions. The researchers found that the best predictor of people's compliance to the rules was how much their close circle complied with the rules, which had an even stronger effect than people's own approval of the rules. The research published in British Journal of Psychology highlights a blindspot in policy responses ...

Study finds especially high rates of lupus in certain racial/ethnic groups

2021-01-21
The US prevalence of the autoimmune disease lupus is 72.8 cases per 100,000 individuals, according to an analysis of population-based registries. The analysis, which is published in END ...

Does where older US adults die affect their wellbeing at the end of life?

2021-01-21
Where people die can affect the quality of their deaths and the end-of-life care that they receive. A study published in the END ...

The important role of pharmacists for older adults' health

2021-01-21
Pharmacists play an important role in managing medication-based therapies for older community-dwelling patients, according to a study published in the END ...

Cancer can be precisely diagnosed using a urine test with artificial intelligence

Cancer can be precisely diagnosed using a urine test with artificial intelligence
2021-01-21
Prostate cancer is one of the most common cancers among men. Patients are determined to have prostate cancer primarily based on *PSA, a cancer factor in blood. However, as diagnostic accuracy is as low as 30%, a considerable number of patients undergo additional invasive biopsy and thus suffer from resultant side effects, such as bleeding and pains. *Prostate-Specific Antigen (PSA): a prostate-specific antigen (a cancer factor) used as an index for the screening of prostate cancer. The Korea Institute of Science and Technology (KIST) announced that the collaborative research team led by Dr. Kwan Hyi Lee from the Biomaterials Research Center and Professor In Gab Jeong from Asan Medical Center developed a technique ...

Antibiotic resistance may spread even more easily than expected

Antibiotic resistance may spread even more easily than expected
2021-01-21
Pathogenic bacteria in humans are developing resistance to antibiotics much faster than expected. Now, computational research at Chalmers University of Technology, Sweden, shows that one reason could be significant genetic transfer between bacteria in our ecosystems and to humans. This work has also led to new tools for resistance researchers. According to the World Health Organisation, antibiotic resistance is one of the greatest threats to global health, food safety and development. It already causes over 33,000 deaths a year in Europe alone. Completely ...

Internet and freedom of speech, when metaphors give too much power

Internet and freedom of speech, when metaphors give too much power
2021-01-21
Since 1997 (Reno vs. American Civil Liberties Union), the Supreme Court has used the metaphor of the free market of ideas to define the Internet, thus addressing the regulation of the net as a matter of freedom of speech. In law, metaphors have a constitutive value and, once established, affect the debate and the decisions of the Courts for a long time. In the paper 'Judicial Frames and Fundamental Right in Cyberspace', published in the American Journal of Comparative Law, Oreste Pollicino (Bocconi University) and Alessandro Morelli (Università Magna Graecia, Catanzaro) apply to judicial reasoning reflections on metaphors and go so far as to criticize, on the one hand, the US Supreme Court's orientations on (non-)regulation of the Internet and, on the other, to invoke changes ...

LAST 30 PRESS RELEASES:

Diamond continues to shine: new properties discovered in diamond semiconductors

Researchers find the key to Artificial Intelligence’s learning power – an inbuilt, special kind of Occam’s razor

Genetic tweak optimizes drug-making cells by blocking buildup of toxic byproduct

University of Birmingham researchers awarded grant to tackle early-stage heart disease in chronic kidney disease

Researchers harness AI to predict cardiovascular risk from CT scans

Samsung takes top spot in U.S. patents for third year running while TSMC rises into second place; after four-year falloff, grants increase nearly 4%

HKU ecologist highlights critical gaps in global wildlife trade monitoring

Smoking may lead people to earn less

Hiroshima flooding: A case study of well usage and adaptive governance

New survey finds over half of Americans are unaware that bariatric surgery can improve fertility

World’s oldest 3D map discovered

Metabolomics-driven approaches for identifying therapeutic targets in drug discovery

Applications of ultrafast nano-spectroscopy and nano-imaging

Study links PFAS contamination of drinking water to a range of rare cancers

Scientists explain how a compound from sea sponge exerts its biological effects

Why older women are embracing the open road

Shift to less reliable ‘natural’ contraception methods among abortion patients over past 5 years

Tobacco advertising + sponsorship bans linked to 20% lower odds of smoking

Vascular ‘fingerprint’ at the back of the eye can accurately predict stroke risk

Circulation problems in the brain’s seat of memory linked to mild cognitive impairment in older adults

Oregon State receives $11.9 million from Defense Department to enhance health of armed forces

Leading cancer clinician, researcher Dr. Jenny Chang to lead Houston Methodist Academic Institute

Engineering quantum entanglement at the nanoscale

Researchers develop breakthrough one-step flame retardant for cotton textiles

New study identifies how blood vessel dysfunction can worsen chronic disease

Picking the right doctor? AI could help

Travel distance to nearest lung cancer facility differs by racial and ethnic makeup of communities

UTA’s student success strategy earns national acclaim

Wind turbines impair the access of bats to water bodies in agricultural landscapes

UCF biology researchers win awards from NOAA to support critical coastal work

[Press-News.org] How cells 'eat' their own fluid components