(Press-News.org) When tetrapods (four-limbed vertebrates) began to move from water to land roughly 390 million years ago it set in motion the rise of lizards, birds, mammals, and all land animals that exist today, including humans and some aquatic vertebrates such as whales and dolphins.
The earliest tetrapods originated from their fish ancestors in the Devonian period and are more than twice as old as the oldest dinosaur fossils. They resembled a cross between a giant salamander and a crocodile and were about 1-2 meters long, had gills, webbed feet and tail fins, and were still heavily tied to water. Their short arms and legs had up to eight digits on each hand and foot and they were probably ambush predators, lurking in shallow water waiting for prey to come near.
Scientists know how the fins of fish transformed into the limbs of tetrapods, but controversies remain about where and how the earliest tetrapods used their limbs. And, while many hypotheses have been proposed, very few studies have rigorously tested them using the fossil record.
In a paper published January 22 in Science Advances an international team of researchers examined three-dimensional digital models of the bones, joints, and muscles of the fins and limbs of two extinct early tetrapods and a closely related fossil fish to reveal how function of the forelimb changed as fins evolved into limbs. The research led by Julia Molnar, Assistant Professor at New York Institute of Technology College of Osteopathic Medicine and Stephanie Pierce, Thomas D. Cabot Associate Professor of Organismic and Evolutionary Biology at Harvard University, discovered three distinct functional stages in the transition from fins to limbs, and that these early tetrapods had a very distinct pattern of muscle leverage that didn't look like a fish fin or modern tetrapod limbs.
To reconstruct how limbs of the earliest known tetrapods functioned, Molnar, Pierce and co-authors John Hutchinson (Royal Veterinary College), Rui Diogo (Howard University), and Jennifer Clack (University of Cambridge) first needed to figure out what muscles were present in the fossil animals. A challenging task as muscles are not preserved in fossils, and the muscles of modern fish fins are completely different from those of tetrapod limbs. The team spent several years trying to answer the question, how exactly did the few simple muscles of a fin become dozens of muscles that perform all sorts of functions in a tetrapod limb?
"Determining what muscles were present in a 360-million-year-old fossil took many years of work just to get to the point where we could begin to build very complicated musculoskeletal models," said Pierce. "We needed to know how many muscles were present in the fossil animals and where they attached to on the bones so we could test how they functioned".
They built three-dimensional musculoskeletal models of the pectoral fin in Eusthenopteron (a fish closely related to tetrapods that lived during the Late Devonian period about 385 million years ago) and the forelimbs of two early tetrapods, Acanthostega (365 million years old living towards the end of the Late Devonian period) and Pederpes (348-347 million years old living during the early Carboniferous period). For comparison, they also built similar models of the pectoral fins of living fishes (coelacanth, lungfish) and forelimbs of living tetrapods (salamander, lizard).
To determine how the fins and limbs worked, the researchers used computational software originally developed to study human locomotion. This technique had been used recently to study locomotion in the ancestors of humans and also dinosaurs like T. rex, but never in something as old as an early tetrapod.
Manipulating the models in the software, the team were able to measure two functional traits: the joint's maximum range of motion and the muscles' ability to move the fin or limb joints. The two measurements would reveal trade-offs in the locomotor system and allow the researchers to test hypotheses of function in extinct animals.
The team found the forelimbs of all terrestrial tetrapods passed through three distinct functional stages: a "benthic fish" stage that resembled modern lungfish, an "early tetrapod" stage unlike any extinct animal, and a "crown tetrapod" stage with characteristics of both lizards and salamanders.
"The fin from Eusthenopteron had a pattern that was reminiscent of the lungfish, which is one of the closest living relatives of tetrapods," said Pierce. "But the early tetrapod limbs showed more similarities to each other than either fish or modern tetrapods."
"That was perhaps the most surprising," said Molnar. "I thought Pederpes, and possibly Acanthostega, would fall pretty well within the range of modern tetrapods. But they formed their own distinct cluster that didn't look like a modern tetrapod limb or a fish fin. They were not smack dab in the middle but had their own collection of characteristics that probably reflected their unique environment and behaviors."
The results showed that early tetrapod limbs were more adapted for propulsion rather than weight bearing. In the water, animals use their limbs for propulsion to move themselves forward or backward allowing the water to support their body weight. Moving on land, however, requires the animal act against gravity and push downward with their limbs to support their body mass.
This doesn't mean that early tetrapods were incapable of moving on land, but rather they didn't move like a modern-day living tetrapod. Their means of locomotion was probably unique to these animals that were still very much tied to the water, but were also venturing onto land, where there were many opportunities for vertebrate animals but little competition or fear from predators.
"These results are exciting as they independently support a study I published last year using completely different fossils and methods", said Pierce. "That study, which focused on the upper arm bone, indicated that early tetrapods had some capacity for land movement but that they may not have been very good at it."
The researchers are closer to reconstructing the evolution of terrestrial locomotion, but more work is needed. They plan to next model the hind limb to investigate how all four limbs worked together. It has been suggested that early tetrapods were using their forelimbs for propulsion, but modern tetrapods get most of their propulsive power from the hind limb.
"We plan to look for any evidence of a shift from forelimb driven locomotion toward hind limb driving locomotion, like modern tetrapods," said Molnar. Looking at the forelimb and hind limb together could reveal more about the transition from water to land and how tetrapods eventually came to dominate the terrestrial realm.
INFORMATION:
Article and author details
J.L. Molnar, J.R. Hutchinson, R. Diogo, J.A. Clack, S.E. Pierce. Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition. Science Advances 7, eabd7457.
New research suggests the majority of people in the UK are willing to use privacy-encroaching tracking technology and support the introduction of 'immunity passports' to protect themselves and others in the COVID-19 pandemic.
The study, published today in the journal PLOS ONE, found more than two thirds of respondents overall would accept some form of smartphone tracking app to help manage social distancing and the relaxation of a full public lockdown.
However, its findings are not reflected in the number of people who have downloaded the NHS Test and Trace app, prompting calls for this issue to be addressed.
Lead author Professor Stephan Lewandowsky, Chair in Cognitive Psychology at the University of Bristol, said: "Attitudes were surprisingly permissive and this ...
Predictions of future climate change require a clear and nuanced understanding of Earth's past climate. In a study published today in Science Advances, University of Hawai'i (UH) at Mānoa oceanographers fully reconciled climate and carbon cycle trends of the past 50 million years--solving a controversy debated in the scientific literature for decades.
Throughout Earth's history, global climate and the global carbon cycle have undergone significant changes, some of which challenge the current understanding of carbon cycle dynamics.
Less carbon dioxide in the atmosphere cools Earth and decreases weathering of rocks and minerals on land over long time scales. Less weathering should lead to a shallower calcite compensation depth (CCD), which is the depth in the ocean where ...
Laser beams can be used to change the properties of materials in an extremely precise way. This principle is already widely used in technologies such as rewritable DVDs. However, the underlying processes generally take place at such unimaginably fast speeds and at such a small scale that they have so far eluded direct observation. Researchers at the University of Göttingen and the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen have now managed to film, for the first time, the laser transformation of a crystal structure with nanometre resolution and in slow motion in an electron microscope. The results have been published in the journal Science.
The ...
Head and neck cancer is the sixth most common cancer worldwide, and while effective treatments exist, sadly, the cancer often returns.
Researchers at the University of Cincinnati have tested a new combination therapy in animal models to see if they could find a way to make an already effective treatment even better.
Since they're using a Food and Drug Administration-approved drug to do it, this could help humans sooner than later.
These findings are published in the journal END ...
Washington, DC - January 22, 2021 - New research shows that non-steroidal anti-inflammatory drugs (NSAIDs) reduced both antibody and inflammatory responses to SARS-CoV-2 infection in mice. The study appears this week in the Journal of Virology, a publication of the American Society for Microbiology.
The research is important because "NSAIDs are arguably the most commonly used anti-inflammatory medications," said principal investigator Craig B. Wilen, Assistant Professor of Laboratory Medicine and Immunology, Yale University School of Medicine.
In addition to taking NSAIDs for chronic conditions such as arthritis, people take them "for shorter periods of time during infections, and [during] ...
UPTON, NY - New results from an atmospheric study over the Eastern North Atlantic reveal that tiny aerosol particles that seed the formation of clouds can form out of next to nothingness over the open ocean. This "new particle formation" occurs when sunlight reacts with molecules of trace gases in the marine boundary layer, the atmosphere within about the first kilometer above Earth's surface. The findings, published in the journal Nature Communications, will improve how aerosols and clouds are represented in models that describe Earth's climate so scientists can understand how the particles--and the processes that control them--might ...
Millions of students around the world could benefit if their educators adopted a more flexible and practical approach, say Swansea University experts.
After analysing the techniques current being used in higher education, the researchers are calling for a pragmatic and evidence-based approach instead.
Professor Phil Newton, director of learning and teaching at of Swansea University Medical School, said: "Higher education is how we train those who carry out important professional roles in our society. There are now more than 200 million students in HE worldwide and this number is likely to double again over the next decade.
"Given the size, impact, importance and cost of ...
Researchers at the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) in Argentina have found that, since the 1990s, up to 25% of reported bee species are no longer being reported in global records, despite a large increase in the number of records available. While this does not mean that these species are all extinct, it might indicate that these species have become rare enough that no one is observing them in nature. The findings appear January 22 in the journal One Earth.
"With citizen science and the ability to share data, records are going up exponentially, but the number of species reported in these records is going down," says first ...
Although electric vehicles that reduce greenhouse gas emissions attract many drivers, the lack of confidence in charging services deters others. Building a reliable network of charging stations is difficult in part because it's challenging to aggregate data from independent station operators. But now, researchers reporting January 22 in the journal Patterns have developed an AI that can analyze user reviews of these stations, allowing it to accurately identify places where there are insufficient or out-of-service stations.
"We're spending billions ...
On January 22 in Current Biology, a team of Harvard-led researchers presented the most complete genome yet assembled of one of the major Rafflesiaceae lineages, Sapria himalayana.
The species is found in Southeast Asia and its mottled red and white flower is about the size of a dinner plate. (It's more famous cousin, Rafflesia arnoldii, produces blossoms nearly three feet in diameter, the largest in the world.)
The genetic analysis revealed an astonishing degree of gene loss and surprising amounts of gene theft from its ancient and modern hosts. These findings bring unique perspectives into the number and kind of genes it takes to be an endoparasite (an organism that is completely dependent on its host for all nutrients), along ...