(Press-News.org) As obesity becomes a growing issue worldwide - nearly tripling over the last-half century - scientists are trying to gain a better understanding of the condition at the molecular level. Now, new research led by UC San Francisco scientists suggests that a single protein could play an outsize role in weight gain.
As reported in Nature Metabolism on February 18, 2021, UCSF's Davide Ruggero, PhD, and colleagues found that mice in which activity of a protein called eIF4E is diminished, either genetically or pharmaceutically, gain only half the weight of other mice, even if all the mice eat a high-fat diet.
"These mice were basically protected from weight gain," said senior author Ruggero, the Helen Diller Family Chair in Basic Cancer Research at UCSF, "and their livers were more healthy and not full of fat droplets."
The eIF4E protein plays a critical role in initiating protein synthesis and is found in all cells of the body. During the process called translation, strands of messenger RNA (mRNA) carry protein-making instructions from genes to ribosomes, the cellular machines in which proteins are made. In organisms ranging from yeast to mammals, eIF4E forms a key part of a complex that binds to a cap at the end of each mRNA strand and guides the mRNA to ribosomes. eIF4E is thereby thought to be essential for the production of all proteins.
Because of its importance, until recently, a full complement of eIF4E was viewed as essential to life. But in 2015 Ruggero's research group made the surprising discovery that mice that were genetically modified to carry just one copy of the gene for eIF4E - and thus only half the amount of the eIF4E protein found in normal mice - were still able to synthesize proteins and developed normally.
But the Ruggero team explored whether there might be more subtle effects of eIF4E deletion in certain living conditions. In experiments led by former UCSF postdoctoral researcher Crystal S. Conn, PhD, now assistant professor at the University of Pennsylvania's Perelman School of Medicine, and current Ruggero lab postdoc Haojun Yang, PhD, the team fed both normal and the eIF4E-modified mice a high-fat diet for five months. As described in Nature Metabolism, they found that the modified mice only gained half as much weight than their counterparts, suggesting that eIF4E activity is involved in fat storage.
"Targeting mRNA translation may become a novel way to cure obesity," said Yang, co-first author of the new paper.
Obesity develops when an individual consumes more energy than they expend. In particular, any excess of dietary fats gets deposited in what are known as lipid droplets in organs like the liver. Compared to the livers from other mice fed a high-fat diet, the livers of the eIF4E-modified mice contained far fewer - and smaller - lipid droplets. With these findings in hand, the Ruggero group took a closer look at how eIF4E controls obesity.
UCSF's Alma Burlingame, PhD, professor of pharmaceutical chemistry, used mass spectrometry to profile proteins in both the normal and modified mice. From these data, the researchers discovered that many of the proteins present in eIF4E-modified mice were not only reducing lipid storage in the liver, but also boosting lipid metabolism - essentially, the mice could eat more and also burn more fat.
"If you put each type of mouse on treadmills or made them run a marathon, eIF4E-modified mice would always win - they could keep going because they can burn the lipids," said Ruggero.
In 2012, Ruggero co-founded eFFECTOR Therapeutics, a biopharmaceutical company developing cancer drugs that target translation. Among the small molecules he had already developed is a translation inhibitor called eFT508 (tomivosertib). Currently in clinical trials for various forms of cancer, eFT508 inhibits the actions of eIF4E.
eFT508 selectively blocks eIF4E phosphorylation, a mechanism used by proteins to regulate one another that effectively works as a light switch to turn a protein "on" or "off." In the case of eIF4E, phosphorylation encourages cells to store fat, whereas blocking phosphorylation encourages them to burn fat as fuel. As a result, mice treated with this inhibitor and fed a high-fat diet gained much less weight than mice who received a control drug.
This newly discovered fat-burning mechanism could be enticing for athletes who want to increase their endurance, said Conn, co-first author of the Nature Metabolism paper.
Obesity is a risk factor for cancer, and the new findings involving eIF4E provide an intriguing new perspective on this link, Ruggero said. He hopes that researchers will more deeply investigate the role of this translation factor in obesity, cancer, and the relationship between the two.
Moving forward, Ruggero is also keen to study whether the eFT508 translation inhibitor can prevent or treat other features of obesity, including non-alcoholic fatty liver disease, or NAFLD - a severe form of liver damage from obesity that may lead to liver cancer.
INFORMATION:
Authors: Ruggero, Conn, and Yang were joined by Harrison J. Tom, Kenji Ikeda, Juan A. Oses-Prieto, Yasuo Oguri, Supna Nair, Ryan M. Gill, Shingo Kajimura, and Alma L. Burlingame, all of UCSF, and Ralph J. DeBerardinis, and Hieu Vu of UT Southwestern Medical Center.
Funding: Major funding for the study was from the National Institutes of Health (R01CA184624 and R35CA242986) and the American Cancer Society (American Cancer Society Research Professor Award). For a complete list of funders, see the paper online.
Disclosures: DeBerardinis is an advisor for Agios, and Ruggero is a shareholder of eFFECTOR Therapeutics, Inc., and a member of its scientific advisory board.
About UCSF: The University of California, San Francisco (UCSF) is exclusively focused on the health sciences and is dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. UCSF Health, which serves as UCSF's primary academic medical center, includes top-ranked specialty hospitals and other clinical programs, and has affiliations throughout the Bay Area. Learn more at ucsf.edu, or see our Fact Sheet.
Follow UCSF
ucsf.edu | Facebook.com/ucsf | YouTube.com/ucsf
What The Study Did: Characteristics associated with posttraumatic stress disorder in patients after severe COVID-19 were analyzed in this observational study.
Authors: Delfina Janiri, M.D., of the Fondazione Policlinico Universitario Agostino Gemelli IRCCS in Rome, Italy, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(10.1001/jamapsychiatry.2021.0109)
Editor's Note: The article includes conflict of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, financial disclosures, funding and support, etc.
INFORMATION:
Media ...
What The Study Did: This study examined how lockdowns during the COVID-19 pandemic changed the spoken communication environments of children with cochlear implants by comparing the sounds they were exposed to before and during the resulting closures of schools and nonessential businesses.
Authors: Karen A. Gordon, Ph.D., of the University of Toronto and The Hospital for Sick Children in Toronto, Canada, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamaoto.2020.5496)
Editor's Note: The article includes conflict of interest ...
What The Study Did: This is a diagnostic study that examines the accuracy and acceptability of a 3-dimensionally printed swab for identifying SARS-CoV-2.
Authors: David M. Allen, M.D., of the National University of Singapore, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamaoto.2020.5680)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.
INFORMATION:
Media ...
Over 20.5 million years of life may have been lost due to COVID-19 globally, with an average of 16 years lost per death, according to a study published in Scientific Reports. Years of life lost (YLL) - the difference between an individual's age at death and their life expectancy - due to COVID-19 in heavily affected countries may be two to nine times higher than YLL due to average seasonal influenza.
Héctor Pifarré i Arolas, Mikko Mÿrskyla and colleagues estimated YLL due to COVID-19 using data on over 1,279,866 deaths in 81 countries, as well as life ...
Viruses are the most numerous biological entities on the planet. Now researchers at the Wellcome Sanger Institute and EMBL's European Bioinformatics Institute (EMBL-EBI) have identified over 140,000 viral species living in the human gut, more than half of which have never been seen before.
The paper, published today (18 February 2021) in Cell, contains an analysis of over 28,000 gut microbiome samples collected in different parts of the world. The number and diversity of the viruses the researchers found was surprisingly high, and the data opens up new research avenues for understanding how viruses living in the gut affect human health.
The human gut is an incredibly biodiverse environment. In addition to bacteria, hundreds of thousands of viruses ...
The incidence of surgical site infections after an operation is an important quality indicator for hospitals. An overview from six European countries published in 2017 documented increased costs and, in some cases, significantly poorer surgical outcomes due to SSIs. The European Center for Disease Control (ECDC) and authorities in the U.S. have therefore defined criteria for recording and documenting the rate of surgical site infections per procedure. Swissnoso has issued binding guidelines for Switzerland based on these criteria. The study investigated to what extent surgical site ...
Positron Emission Tomography (PET) plays a major role in the early detection of various types of cancer. A research group led by Specially Appointed Professor Katsumi Kaneko of the Research Initiative for Supra-Materials (RISM), Shinshu University have discovered a method to separate oxygen-18 from oxygen-16, an essential isotope for PET diagnosis, at high speed and high efficiency. The results of this research were recently published online in the journal Nature Communications.
The novel method for the rapid and efficient separation of O-18 from O2-16, which ...
Covid-19 has not made people any less concerned about climate change - despite the pandemic disrupting and dominating many aspects of their lives, a study suggests.
Over a period of 14 months - including the first three months of the Covid-19 lockdown - neither concern about climate change nor belief in the severity of the problem declined in the UK, the research found.
Researchers compared responses to the pandemic with the financial crisis of 2008 to better understand how worries and priorities can change in a crisis.
In contrast to the economic collapse of 2008, which led to reduced concern with environmental issues, the pandemic has not decreased people's belief in the severity of climate change.
The findings shed light on how a concept called the finite pool ...
A team of researchers has devised a method using smartphones in order to measure food consumption--an approach that also offers new ways to predict physical well-being.
"We've harnessed the expanding presence of mobile and smartphones around the globe to measure food consumption over time with precision and with the potential to capture seasonal shifts in diet and food consumption patterns," explains Andrew Reid Bell, an assistant professor in New York University's Department of Environmental Studies and an author of the paper, which appears in the journal Environmental Research Letters.
Food consumption ...
Menopause is associated with several physiological changes, including loss of skeletal muscle mass. However, the mechanisms underlying muscle wasting are not clear. A new study conducted in collaboration between the universities of Minnesota (USA) and Jyväskylä (Finland) reveals that estrogen deficiency alters the microRNA signalling in skeletal muscle, which may activate signalling cascades leading to loss of muscle mass.
Menopause leads to an estrogen deficiency that is associated with decreases in skeletal muscle mass and strength. This is likely due to changes in both muscle function and the size of muscle cells commonly referred to as fibers.
"The mechanistic role of estrogen in the loss of muscle mass had not been established. In our study, we focused on signaling cascades ...