PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Zealandia Switch may be the missing link in understanding ice age climates

Zealandia Switch may be the missing link in understanding ice age climates
2021-03-12
(Press-News.org) Orono, Maine -- The origins of ice age climate changes may lie in the Southern Hemisphere, where interactions among the westerly wind system, the Southern Ocean and the tropical Pacific can trigger rapid, global changes in atmospheric temperature, according to an international research team led by the University of Maine.

The mechanism, dubbed the Zealandia Switch, relates to the general position of the Southern Hemisphere westerly wind belt -- the strongest wind system on Earth -- and the continental platforms of the southwest Pacific Ocean, and their control on ocean currents. Shifts in the latitude of the westerly winds affects the strength of the subtropical oceanic gyres and, in turn, influences the release of energy from the tropical ocean waters, the planet's "heat engine." Tropical heat spreads rapidly through the atmosphere and ocean to the polar regions of both hemispheres, acting as the planet's thermostat.

The Southern Hemisphere climate dynamics may be the missing link in understanding longstanding questions about ice ages, based on the findings of the research team from UMaine, Columbia University's Lamont-Doherty Earth Observatory, the University of Arizona, and GNS Science in New Zealand, published in Quaternary Science Reviews.

For more than a quarter-century, George Denton, UMaine Libra Professor of Geological Sciences, the journal article's first author, has led research reconstructing the history of mountain glaciers in the Southern Hemisphere. In the late 1980s, he and Wallace Broecker, a geochemist at Columbia University, noted that a key question about ice ages remained unresolved -- the link between ice age climate and the orbital cycles in the length and strength of the Earth's season. Evidence showed that ice age climate changes were synchronous in both polar hemispheres, with rapid transitions from glacial to interglacial global climate conditions. They concluded that existing theories could not adequately account for changes in seasonality, ice sheet size and regional climate.

Mountain glaciers are highly sensitive to climate and well suited to climatic reconstruction, using distinctive moraine deposits that mark the former glacier limits. In the 1990s, Denton led research teams in the mapping and dating of moraine sequences in South America and, more recently, in New Zealand's Southern Alps, with co-author David Barrell, geologist and geomorphologist with the New Zealand government's geoscience research institute, GNS Science.

With advances in isotopic dating of moraines in the mid-2000s, Denton teamed up with Columbia University's Joerg Schaefer, who directs the Cosmogenic Nuclide Laboratory at the Lamont-Doherty Earth Observatory. Together with CU-LDEO colleague and co-author Michael Kaplan, Schaefer, Denton, and UMaine assistant professor and co-author Aaron Putnam have guided a succession of UMaine graduate student field and laboratory projects (including Putnam's Ph.D. work) that have developed a chronology of climate-induced glacier changes in the Southern Alps spanning many tens of thousands of years. The most recent participant in the UMaine-CU partnership is UMaine Ph.D. student and co-author Peter Strand.

Collectively, the UMaine, CU-LDEO and GNS Science partners have worked to create and compile mountain glacier chronologies from New Zealand and South America, producing a comprehensive chronology of glacier extent during and since the last ice age. The team then compared the moraine dating to paleoclimate data worldwide to gain insights into the climate dynamics of ice ages and millennial-scale abrupt climate events. The findings highlight a general global synchronicity of mountain-glacier advance and retreat during the last ice age.

Deep insights into the climate dynamics come from co-author Joellen Russell, climate scientist at the University of Arizona and Thomas R. Brown Distinguished Chair of Integrative Science. Following on her longstanding efforts at modeling the climatic modulation of the westerly winds, she evaluated simulations done as part of the Southern Ocean Model Intercomparison Project, part of the Southern Ocean Carbon and Climate Observations and Modeling initiative. The modeling showed the changes to the southern wind systems have profound consequences for the global heat budget, as monitored by glacier systems.

The "switch" takes its name from Zealandia, a largely submerged continental platform about a third of the size of Australia, with the islands of New Zealand being the largest emergent parts. Zealandia presents a physical impediment to ocean current flow. When the westerly wind belt is farther north, the southward flow of warm ocean water from the tropical Pacific is directed north of the New Zealand landmass (glacial mode). With the wind belt farther south, warm ocean water extends to the south of New Zealand (interglacial mode). Computer modelling shows that global climate effects arise from the latitude at which the westerlies are circulating. A southward shift of the southern westerlies invigorates water circulation in the South Pacific and Southern oceans, and warms the surface ocean waters across much of the globe.

The researchers hypothesize that subtle changes in the Earth's orbit affect the behavior of the Southern Hemisphere westerly winds, and that behavior lies at the heart of global ice age cycles. This perspective is fundamentally different from the long-held view that orbital influences on the extent of Northern Hemisphere continental ice sheets regulate ice age climates. Adding weight to the Zealandia Switch hypothesis is that the Southern Hemisphere westerlies regulate the exchange of carbon dioxide and heat between the ocean and atmosphere, and, thus, exert a further influence on global climate.

"Together with interhemispheric paleoclimate records and with the results of coupled ocean-atmosphere climate modeling, these findings suggest a big, fast and global end to the last ice age in which a southern-sourced warming episode linked the hemispheres," according to the researchers, whose work was funded by the Comer Family Foundation, the Quesada Family Foundation, the National Science Foundation and the New Zealand government.

The last glacial termination was a global warming episode that led to extreme seasonality (winter vs. summer conditions) in northern latitudes by stimulating a flush of meltwater and icebergs into the North Atlantic from adjoining ice sheets. Summer warming led to freshwater influx, resulting in widespread North Atlantic sea ice that caused very cold northern winters and amplified the annual southward shift of the Intertropical Convergence Zone and the monsoonal rain belts. Although this has created an impression of differing temperature responses between the polar hemispheres, the so-called "bipolar seesaw," the researchers suggest this is due to contrasting interregional effects of global warming or cooling. A succession of short-lived, abrupt, episodes of cold northern winters during the last ice age are suggested to have been caused by temporary shifts of the Zealandia Switch mechanism.

The southward shift of the Southern Hemisphere westerlies at the termination of the last ice age was accompanied by gradual but sustained release of carbon dioxide from the Southern Ocean, which may have helped to lock the climate system into a warm interglacial mode.

The researchers suggest that the introduction of fossil CO2 into the atmosphere may be reawakening the same dynamics that ended the last ice age, potentially propelling the climate system into a new mode.

"The mapping and dating of mid-latitude Southern Hemisphere mountain-glacier moraines leads us to the view that the latitude and strength of the austral westerlies, and their effect on the tropical/subtropical ocean, particularly in the region spanning the Indo-Pacific Warm Pool and Tasman Sea through to the Southern Ocean, provides an explanation for driving orbital-scale global shifts between glacial and interglacial climatic modes, via the Zealandia Switch mechanism," the research team wrote. "Such behavior of the ocean-atmosphere system may be operative in today's warming world, introducing a distinctly nonlinear mechanism for accelerating global warming due to atmospheric CO2 rise."

INFORMATION:


[Attachments] See images for this press release:
Zealandia Switch may be the missing link in understanding ice age climates

ELSE PRESS RELEASES FROM THIS DATE:

Financial strain predicts future risk of homelessness and partly explains the effect of mental illness

Financial strain predicts future risk of homelessness and partly explains the effect of mental illness
2021-03-12
March 12, 2021 - Financial strains like debt or unemployment are significant risk factors for becoming homeless, and even help to explain increased risk of homelessness associated with severe mental illness, reports a study in a supplement to the April issue of Medical Care. The journal is published in the Lippincott portfolio by Wolters Kluwer. The findings "suggest that adding financial well-being as a focus of homelessness prevention efforts seems promising, both at the individual and community level," according to the new research, led by Eric Elbogen, PhD, of the US Department of Veterans Affairs (VA) National Center on Homelessness and Duke University School of Medicine. The study appears as part of a special issue on ...

Unmarried people given less intensive treatment for mantle cell lymphoma

2021-03-12
Mantle cell lymphoma is a malignant disease in which intensive treatment can prolong life. In a new study, scientists from Uppsala University and other Swedish universities show that people with mantle cell lymphoma who were unmarried, and those who had low educational attainment, were less often treated with a stem-cell transplantation, which may result in poorer survival. The findings have been published in the scientific journal Blood Advances. Patients diagnosed with a mantle cell lymphoma (MCL) where the disease has spread receive intensive treatment with cytotoxic drugs and stem-cell transplantation. In a new study, researchers looked at which people are more likely to be offered transplants, and compared survival between those ...

You are not a cat, but a cat could someday help treat your chronic kidney disease

2021-03-12
WINSTON-SALEM, NC - March 12, 2021 - The Wake Forest Institute for Regenerative Medicine is investigating how cats with chronic kidney disease could someday help inform treatment for humans. In humans, treatment for chronic kidney disease -- a condition in which the kidneys are damaged and cannot filter blood as well as they should -- focuses on slowing the progression of the organ damage. The condition can progress to end-stage kidney failure, which is fatal without dialysis or a kidney transplant. An estimated 37 million people in the US suffer from chronic kidney disease, according to the Centers for Disease Control. The American Veterinary Medical Association estimates there are about 58 million ...

Tiny bubbles making large impact on medical ultrasound imaging

Tiny bubbles making large impact on medical ultrasound imaging
2021-03-12
If you were given "ultrasound" in a word association game, "sound wave" might easily come to mind. But in recent years, a new term has surfaced: bubbles. Those ephemeral, globular shapes are proving useful in improving medical imaging, disease detection and targeted drug delivery. There's just one glitch: bubbles fizzle out soon after injection into the bloodstream. Now, after 10 years' work, a multidisciplinary research team has built a better bubble. Their new formulations have resulted in nanoscale bubbles with customizable outer shells -- so small and durable that they can travel to and penetrate some of the ...

A computational guide to lead cells down desired differentiation paths

A computational guide to lead cells down desired differentiation paths
2021-03-12
(BOSTON) -- There is a great need to generate various types of cells for use in new therapies to replace tissues that are lost due to disease or injuries, or for studies outside the human body to improve our understanding of how organs and tissues function in health and disease. Many of these efforts start with human induced pluripotent stem cells (iPSCs) that, in theory, have the capacity to differentiate into virtually any cell type in the right culture conditions. The 2012 Nobel Prize awarded to Shinya Yamanaka recognized his discovery of a strategy that can reprogram adult cells to become iPSCs ...

New AJTMH supplement offers guidance on severe COVID-19 management in resource-limited settings

2021-03-12
Arlington, Va. (March 12, 2021)--A new supplement offering guidance on severe COVID-19 management in resource-limited settings is now available on the American Journal of Tropical Medicine (AJTMH) website. Pragmatic Recommendations for the Management of Hospitalized COVID-19 Patients in Low- and Middle-Income Countries was coordinated by a COVID-LMIC Task Force headed by Alfred Papali, MD, of Atrium Health, Charlotte, NC, and Marcus Schultz, MD, PhD, of Mahidol University, Bangkok, Thailand; University of Oxford, United Kingdom; and Amsterdam University Medical Centers, The Netherlands. ...

How to spot deepfakes? Look at light reflection in the eyes

How to spot deepfakes? Look at light reflection in the eyes
2021-03-12
BUFFALO, N.Y. - University at Buffalo computer scientists have developed a tool that automatically identifies deepfake photos by analyzing light reflections in the eyes. The tool proved 94% effective in experiments described in a paper accepted at the IEEE International Conference on Acoustics, Speech and Signal Processing to be held in June in Toronto, Canada. "The cornea is almost like a perfect semisphere and is very reflective," says the paper's lead author, Siwei Lyu, PhD, SUNY Empire Innovation Professor in the Department of Computer Science and Engineering. "So, anything that is coming to the eye with a light emitting from those sources will have an image on ...

Immuno-PET can give physicians early insight into tumor response to targeted therapy

Immuno-PET can give physicians early insight into tumor response to targeted therapy
2021-03-12
Reston, VA--Immuno-positron emission tomography (PET) imaging can provide early insight into a tumor's response to targeted therapy, allowing physicians to select the most effective treatment for patients who have cancer. The new research was published in the March issue of The Journal of Nuclear Medicine. The research showed that immuno-PET successfully visualizes changes in different cancer receptors (receptor tyrosine kinases, or RTKs) within tumors during targeted therapies. This gives physicians a tool that can be used to evaluate the effectiveness of a treatment soon after its administration. "When healthy cells turn into cancer cells, there is a disruption in the RTK signaling. This makes RTKs a valuable therapeutic and ...

CT colonography most effective noninvasive colorectal cancer screening test

CT colonography most effective noninvasive colorectal cancer screening test
2021-03-12
Leesburg, VA, March 12, 2021--According to an open-access article in ARRS' American Journal of Roentgenology (AJR), compared with multi-target stool-DNA (mt-sDNA) and fecal immunochemical test (FIT), CT colonography (CTC) with 10 mm threshold most effectively targets advanced neoplasia (AN)--preserving detection while decreasing unnecessary colonoscopies. "CTC performed with a polyp size threshold for colonoscopy referral set at 10 mm represents the most effective and efficient non-invasive screening test for colorectal cancer (CRC) prevention and detection," clarified first author Perry J. Pickhardt from the department of radiology ...

New machine learning model could remove bias from social network connections

2021-03-12
UNIVERSITY PARK, Pa. -- Did you ever wonder how social networking applications like Facebook and LinkedIn make recommendations on the people you should friend or pages you should follow? Behind the scenes are machine learning models that classify nodes based on the data they contain about users -- for example, their level of education, location or political affiliation. The models then use these classifications to recommend people and pages to each user. But there is significant bias in the recommendations made by these models -- known as graph neural networks (GNNs) ...

LAST 30 PRESS RELEASES:

Quandela, the CNRS, Université Paris-Saclay and Université Paris Cité join forces to accelerate research and innovation in quantum photonics

Pulmonary vein isolation with optimized linear ablation vs pulmonary vein isolation alone for persistent AF

New study finds prognostic value of coronary calcium scores effective in predicting risk of heart attack and overall mortality in both women and men

New fossil reveals the evolution of flying reptiles

Redefining net zero will not stop global warming – scientists say

Prevalence of cardiovascular-kidney-metabolic syndrome stages by social determinants of health

Tiny worm makes for big evolutionary discovery

Cause of the yo-yo effect deciphered

Suicide rates for young male cancer survivors triple in recent years

Achalasia and esophageal cancer: A case report and literature review

Authoritative review makes connections between electron density topology, future of materials modeling and how we understand mechanisms of phenomena in familiar devices at the atomistic level

Understanding neonatal infectious diseases in low- and middle-income countries: New insights from a 30-year study

This year’s dazzling aurora produced a spectacular display… of citizen science

New oral drug to calm abdominal pain

New framework champions equity in AI for health care

We finally know where black holes get their magnetic fields: Their parents

Multiple sclerosis drug may help with poor working memory

The MIT Press releases workshop report on the future of open access publishing and policy

Why substitute sugar with maple syrup?

New study investigates insecticide contamination in Minnesota’s water

The Einstein Foundation Berlin awards €500,000 prize to advance research quality

Mitochondrial encephalopathy caused by a new biallelic repeat expansion

Nanoplastics can impair the effect of antibiotics

Be humble: Pitt studies reveal how to increase perceived trustworthiness of scientists

Promising daily tablet increases growth in children with dwarfism

How 70% of the Mediterranean Sea was lost 5.5 million years ago

Keeping the lights on and the pantry stocked: Ensuring water for energy and food production

Parkinson’s Paradox: When more dopamine means more tremor

Study identifies strategy for AI cost-efficiency in health care settings

NIH-developed AI algorithm successfully matches potential volunteers to clinical trials release

[Press-News.org] Zealandia Switch may be the missing link in understanding ice age climates