(Press-News.org) A study from Chalmers University of Technology, Sweden, has yielded new answers to fundamental questions about the relationship between the size of an atom and its other properties, such as electronegativity and energy. The results pave the way for advances in future material development. For the first time, it is now possible under certain conditions to devise exact equations for such relationships.
"Knowledge of the size of atoms and their properties is vital for explaining chemical reactivity, structure and the properties of molecules and materials of all kinds. This is fundamental research that is necessary for us to make important advances," explains Martin Rahm, the main author of the study and research leader from the Department of Chemistry and Chemical Engineering at Chalmers University of Technology.
The researchers behind the study, consisting of colleagues from the University of Parma, Italy, as well as the Department of Physics at Chalmers University of Technology, have previously worked with quantum mechanical calculations to show how the properties of atoms change under high pressure. These results were presented in scientific articles in the Journal of the American Chemical Society and ChemPhysChem.
The new study, published in the journal Chemical Science, constitutes the next step in their important work, exploring the relationship between the radius of an atom and its electronegativity - a vital piece of chemical knowledge that has been sought since the 1950s.
Establishing useful new equations
By studying how compression affects individual atoms, the researchers have been able to derive a set of equations that explain how changes in one property - an atom's size - can be translated and understood as changes in other properties - the total energy and the electronegativity of an atom. The derivation has been made for special pressures, at which the atoms can take one of two well-defined energies, two radii and two electronegativities.
"This equation can, for example, help to explain how an increase in an atom's oxidation state also increases its electronegativity and vice versa, in the case of a decrease in oxidation state," says Martin Rahm.
A key question for the science of unexplored materials
One aim of the study has been to help identify new opportunities and possibilities for the production of materials under high pressure. At the centre of the earth, the pressure can reach hundreds of gigapascals - and such conditions are achievable in laboratory settings today. Examples of areas where pressure is used today include the synthesis of superconductors, materials which can conduct electric current without resistance. But the researchers see many further possibilities ahead.
"Pressure is a largely unexplored dimension within materials science, and the interest in new phenomena and material properties that can be realised using compression is growing," says Martin Rahm.
Creating the database they themselves wished for
The large amounts of data that the researchers have computed through their work have now been summarised into a database, and made available as a user-friendly web application. This development was sponsored by Chalmers Area of Advance Materials and made possible through a collaboration with the research group of Paul Erhart at the Department of Physics at Chalmers.
In the web application, users can now easily explore what the periodic table looks like at different pressures. In the latest scientific publication, the researchers provide an example for how this tool can be used to provide new insight into chemistry. The properties of iron and silicon - two common elements found in the earth's crust, mantle and core - are compared, revealing large differences at different pressures.
"The database is something I have been missing for many years. Our hope is that it will prove to be a helpful tool, and be used by many different chemists and materials researchers who study and work with high pressures. We have already used it to guide theoretical searches for new transition metal fluorides," says Martin Rahm.
INFORMATION:
Read the scientific article "Relating atomic energy, radius and electronegativity through compression" here.
The article was written by Martin Rahm, Department of Chemistry and Chemical Engineering, Paul Erhart, Department of Physics at Chalmers University of Technology, and Roberto Cammi, University of Parma.
For more information, contact:
Martin Rahm
Assistant Professor, Chemistry and Chemical Engineering
martin.rahm@chalmers.se
+46 31 772 3050
More about atoms and high pressures
At high pressures, atoms and molecules are squeezed closer together, which affects their electronic structure. Among other things, compression can lead to the formation of new chemical bonds. Semiconductors and insulators can also be turned into metals. In some cases, materials formed under high pressures may retain their structure and properties when the pressure returns to normal. A typical example is diamond, which is formed from ordinary graphite under high pressure.
(MARCH 17, 2021) - The current outbreak of COVID-19 has raised many questions about the value of consideration of standardized testing through the admissions process. One of the many Coronavirus cancellations included a growing number of universities to waive SAT and ACT scores as an admissions requirement for 2022 applicants.
With schools shifting their policy to making standardized "test-optional" and possibly permanently phasing out testing scores in the future as some college experts argue that standardized tests create barriers to students which could reduce their likelihood of acceptance.
A new study led by senior research scientist Paul Westrick from the College Board (ACT, Inc.), along with UTSA professor of management, ...
Mass movements such as landslides and hill-slope debris flows cause billions of euros in economic damage around the world every year. Between 20 and 80 million euros are spent annually from the disaster fund to repair disaster damage in Austria, 15 to 50 percent of which is attributable to mud flows and landslides. Now, a team of geologists from Graz University of Technology (TU Graz), in cooperation with the Burgenland state road administration, identified for the first time the chemical influencing factors and triggers for recurrent mass movements in fine-grained sediments. From results published in the journal Science of the Total Environment, preventive measures and strategies ...
Lenexa, Kan. -- The Infusion Nurses Society has expanded its guidance on the use of needleless connectors to include anti-reflux technology in its recently published 2021 Infusion Therapy Standards of Practice, according to Nexus Medical, makers of the Nexus TKO®-6P Anti-Reflux connector.
As INS' most recognized publication, the updated Standards outline specific categories of needleless connector technology based on the device's internal mechanism for fluid displacement -- negative displacement, positive displacement, neutral and anti-reflux. Of all the categories, the authors note that anti-reflux needleless connectors cause the least amount of blood reflux, which can ...
A groundbreaking new study led by University of Minnesota Twin Cities researchers from both the College of Science and Engineering and the Medical School shows for the first time that lab-created heart valves implanted in young lambs for a year were capable of growth within the recipient. The valves also showed reduced calcification and improved blood flow function compared to animal-derived valves currently used when tested in the same growing lamb model.
If confirmed in humans, these new heart valves could prevent the need for repeated valve replacement surgeries in thousands of children born each year with congenital heart defects. The valves can also be stored for at least six months, which means they could provide surgeons with an "off the shelf" option for treatment.
The ...
A long noncoding RNA whose function was previously unknown turns out to play a vital role in mobilizing the immune response following a bone marrow transplant or solid organ transplantation.
This RNA molecule, cataloged in scientific databases simply as Linc00402, helps activate immune defenders known as T cells in response to the presence of foreign human cells, according to a new study by researchers at the University of Michigan Rogel Cancer Center and Michigan Medicine.
The investigation, which included samples from more than 50 patients who underwent a bone marrow or heart transplant, suggests inhibiting ...
MEMPHIS, Tenn. - Non-Hispanic black patients with Type 1 diabetes and COVID-19 were almost four times as likely to present to the hospital with diabetic ketoacidosis (DKA) compared to non-Hispanic whites, according to an article published in The Journal of Clinical Endocrinology & Metabolism by Le Bonheur Pediatric Endocrinologist Kathryn Sumpter, MD.
The study examined 180 patients with Type 1 diabetes and laboratory-confirmed COVID-19 from 52 clinical sites, including Le Bonheur Children's. The objective of the study was to evaluate instances of DKA, a serious complication of Type 1 diabetes, in patients with Type 1 diabetes and COVID-19 and determine if minorities had increased ...
ITHACA, N.Y. - If you want to build a fully functional nanosized robot, you need to incorporate a host of capabilities, from complicated electronic circuits and photovoltaics to sensors and antennas.
But just as importantly, if you want your robot to move, you need it to be able to bend.
Cornell researchers have created micron-sized shape memory actuators that enable atomically thin two-dimensional materials to fold themselves into 3D configurations. All they require is a quick jolt of voltage. And once the material is bent, it holds its shape - even after the voltage is removed.
As a demonstration, the team created what ...
The coronavirus' structure is an all-too-familiar image, with its densely packed surface receptors resembling a thorny crown. These spike-like proteins latch onto healthy cells and trigger the invasion of viral RNA. While the virus' geometry and infection strategy is generally understood, little is known about its physical integrity.
A new study by researchers in MIT's Department of Mechanical Engineering suggests that coronaviruses may be vulnerable to ultrasound vibrations, within the frequencies used in medical diagnostic imaging.
Through computer simulations, the team has modeled the virus' mechanical response to vibrations across a range of ultrasound ...
A new study has found that about 35% of Americans with a cancer history had an elevated risk of cardiovascular disease in the next decade, compared with about 23% of those who didn't have cancer.
Based on a risk calculator that estimates a person's 10-year chances of developing heart disease or stroke, researchers from The Ohio State University found that the average estimated 10-year risk for a cancer survivor was about 8%, compared to 5% for those who didn't have a history of cancer.
The new study appears in the journal PLOS ONE.
"We know that obesity, cancer and cardiovascular disease share some common risk factors, and in addition to those shared risk factors, cancer patients also receive treatments including radiation and chemotherapy that can affect their cardiovascular ...
Many people have never heard of Brucellosis, but farmers and ranchers in the United States forced to cull animals that test positive for the disease and people infected by the animal-transmitted Brucella abortus (B. abortus) pathogen that suffer chronic, Malaria-type symptoms, certainly have.
Brucellosis is an agricultural and human health concern on a global scale. It was introduced over 100 years ago to Bison and elk in Yellowstone National Park by cattle and has been circulating among the wild herds ever since, leading to periodic outbreaks and reinfection. There is no vaccine for humans, and experimental studies ...