PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Reading minds with ultrasound: A less-invasive technique to decode the brain's intentions

Reading minds with ultrasound: A less-invasive technique to decode the brain's intentions
2021-03-22
(Press-News.org) What is happening in your brain as you are scrolling through this page? In other words, which areas of your brain are active, which neurons are talking to which others, and what signals are they sending to your muscles?

Mapping neural activity to corresponding behaviors is a major goal for neuroscientists developing brain-machine interfaces (BMIs): devices that read and interpret brain activity and transmit instructions to a computer or machine. Though this may seem like science fiction, existing BMIs can, for example, connect a paralyzed person with a robotic arm; the device interprets the person's neural activity and intentions and moves the robotic arm correspondingly.

A major limitation for the development of BMIs is that the devices require invasive brain surgery to read out neural activity. But now, a collaboration at Caltech has developed a new type of minimally invasive BMI to read out brain activity corresponding to the planning of movement. Using functional ultrasound (fUS) technology, it can accurately map brain activity from precise regions deep within the brain at a resolution of 100 micrometers (the size of a single neuron is approximately 10 micrometers).

The new fUS technology is a major step in creating less invasive, yet still highly capable, BMIs.

"Invasive forms of brain-machine interfaces can already give movement back to those who have lost it due to neurological injury or disease," says Sumner Norman, postdoctoral fellow in the Andersen lab and co-first author on the new study. "Unfortunately, only a select few with the most severe paralysis are eligible and willing to have electrodes implanted into their brain. Functional ultrasound is an incredibly exciting new method to record detailed brain activity without damaging brain tissue. We pushed the limits of ultrasound neuroimaging and were thrilled that it could predict movement. What's most exciting is that fUS is a young technique with huge potential--this is just our first step in bringing high performance, less invasive BMI to more people."

The new study is a collaboration between the laboratories of Richard Andersen, James G. Boswell Professor of Neuroscience and Leadership Chair and director of the Tianqiao and Chrissy Chen Brain-Machine Interface Center in the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech; and of Mikhail Shapiro, professor of chemical engineering and Heritage Medical Research Institute Investigator. Shapiro is an affiliated faculty member with the Chen Institute.

A paper describing the work appears in the journal Neuron on March 22.

In general, all tools for measuring brain activity have drawbacks. Implanted electrodes (electrophysiology) can very precisely measure activity on the level of single neurons, but, of course, require the implantation of those electrodes into the brain. Non-invasive techniques like functional magnetic resonance imaging (fMRI) can image the entire brain but require bulky and expensive machinery. Electroencephalography (EEGs) does not require surgery but can only measure activity at low spatial resolution.

Ultrasound works by emitting pulses of high frequency sound and measuring how those sound vibrations echo throughout a substance, such as various tissues of the human body. Sound travels at different speeds through these tissue types and reflects at the boundaries between them. This technique is commonly used to take images of a fetus in utero, and for other diagnostic imaging.

Ultrasound can also "hear" the internal motion of organs. For example, red blood cells, like a passing ambulance, will increase in pitch as they approach the source of the ultrasound waves, and decrease as they flow away. Measuring this phenomenon allowed the researchers to record tiny changes in the brain's blood flow down to 100 micrometers (on the scale of the width of a human hair).

"When a part of the brain becomes more active, there's an increase in blood flow to the area. A key question in this work was: If we have a technique like functional ultrasound that gives us high-resolution images of the brain's blood flow dynamics in space and over time, is there enough information from that imaging to decode something useful about behavior?" Shapiro says. "The answer is yes. This technique produced detailed images of the dynamics of neural signals in our target region that could not be seen with other non-invasive techniques like fMRI. We produced a level of detail approaching electrophysiology, but with a far less invasive procedure."

The collaboration began when Shapiro invited Mickael Tanter, a pioneer in functional ultrasound and director of Physics for Medicine Paris (ESPCI Paris Sciences et Lettres University, Inserm, CNRS), to give a seminar at Caltech in 2015. Vasileios Christopoulos, a former Andersen lab postdoctoral scholar (now an assistant professor at UC Riverside), attended the talk and proposed a collaboration. Shapiro, Andersen, and Tanter then received an NIH BRAIN Initiative grant to pursue the research. The work at Caltech was led by Norman, former Shapiro lab postdoctoral fellow David Maresca (now assistant professor at Delft University of Technology), and Christopoulos. Along with Norman, Maresca and Christopoulos are co-first authors on the new study.

The technology was developed with the aid of non-human primates, who were taught to do simple tasks that involved moving their eyes or arms in certain directions when presented with certain cues. As the primates completed the tasks, the fUS measured brain activity in the posterior parietal cortex (PPC), a region of the brain involved in planning movement. The Andersen lab has studied the PPC for decades and has previously created maps of brain activity in the region using electrophysiology. To validate the accuracy of fUS, the researchers compared brain imaging activity from fUS to previously obtained detailed electrophysiology data.

Next, through the support of the T&C Chen Brain-Machine Interface Center at Caltech, the team aimed to see if the activity-dependent changes in the fUS images could be used to decode the intentions of the non-human primate, even before it initiated a movement. The ultrasound imaging data and the corresponding tasks were then processed by a machine-learning algorithm, which learned what patterns of brain activity correlated with which tasks. Once the algorithm was trained, it was presented with ultrasound data collected in real time from the non-human primates.

The algorithm predicted, within a few seconds, what behavior the non-human primate was going to carry out (eye movement or reach), direction of the movement (left or right), and when they planned to make the movement.

"The first milestone was to show that ultrasound could capture brain signals related to the thought of planning a physical movement," says Maresca, who has expertise in ultrasound imaging. "Functional ultrasound imaging manages to record these signals with 10 times more sensitivity and better resolution than functional MRI. This finding is at the core of the success of brain-machine interfacing based on functional ultrasound."

"Current high-resolution brain-machine interfaces use electrode arrays that require brain surgery, which includes opening the dura, the strong fibrous membrane between the skull and the brain, and implanting the electrodes directly into the brain. But ultrasound signals can pass through the dura and brain non-invasively. Only a small, ultrasound-transparent window needs to be implanted in the skull; this surgery is significantly less invasive than that required for implanting electrodes," says Andersen.

Though this research was carried out in non-human primates, a collaboration is in the works with Dr. Charles Liu, a neurosurgeon at USC, to study the technology with human volunteers who, because of traumatic brain injuries, have had a piece of skull removed. Because ultrasound waves can pass unaffected through these "acoustic windows," it will be possible to study how well functional ultrasound can measure and decode brain activity in these individuals.

INFORMATION:

The paper is titled "Single-trial decoding of movement intentions using functional ultrasound neuroimaging." Additional co-authors are Caltech graduate student Whitney Griggs and Charlie Demene of Paris Sciences et Lettres University and INSERM Technology Research Accelerator in Biomedical Ultrasound in Paris, France. Funding was provided by a Della Martin Postdoctoral Fellowship, a Human Frontiers Science Program Cross-Disciplinary Postdoctoral Fellowship, the UCLA-Caltech Medical Science Training Program, the National Institutes of Health BRAIN Initiative, the Tianqiao and Chrissy Chen Brain-Machine Interface Center, the Boswell Foundation, and the Heritage Medical Research Institute.


[Attachments] See images for this press release:
Reading minds with ultrasound: A less-invasive technique to decode the brain's intentions

ELSE PRESS RELEASES FROM THIS DATE:

To live independently longer, look to inexpensive home hacks

2021-03-22
The pandemic has exposed weaknesses in nursing homes, causing many families to rethink whether to keep an aging parent at home instead. Now a new study by UC San Francisco has found that many elderly Americans lack the basic self-care equipment that could enable them to live at home longer, postponing the need to move into residential care facilities. In the study, researchers focused on three inexpensive, low-tech assistive devices: grab bars around the toilet and in the shower or tub area; a shower or tub seat; and a raised toilet or toilet seat. They identified approximately 2,600 seniors who were representative of Medicare recipients nationwide and were drawn from the National Health and Aging ...

University of Ottawa researchers close in on root of slow motor learning in autism

2021-03-22
Social deficits attract so much attention in the study of autism spectrum disorder, it's easy to forget there are motor learning deficits during early childhood as well. For autistic kids hoping to throw a ball around the schoolyard and connect with classmates, these physical skill differences can isolate a child further. In a new study published in Nature Neuroscience, researchers from the University of Ottawa's Faculty of Medicine have closed in on the neurological underpinnings of the motor learning delay. Dr. Simon Chen's lab in the Department of Cellular and Molecular Medicine of the Faculty of Medicine used a mouse model of autism to demonstrate a shortage ...

Focusing on the unhealthy brain to speed drug discovery

Focusing on the unhealthy brain to speed drug discovery
2021-03-22
Though 40 million concussions are recorded annually, no effective treatment exists for them or for many other brain-related illnesses. In collaboration with Dragan Maric of the National Institutes of Health, Badri Roysam, Hugh Roy and Lillie Cranz Cullen University Professor and Chair of Electrical and Computer Engineering, and his team are working to speed up drug development to treat brain diseases and injuries like concussion by developing new tools. "We are interested in mapping and profiling unhealthy and drug-treated brain tissue in unprecedented detail to reveal multiple biological processes at once - in context," said Roysam about his latest paper published ...

Long-haul COVID: Columbia physicians review what's known

2021-03-22
NEW YORK, NY (March 22, 2021)--The first year of the COVID-19 pandemic has taken the lives of millions of people around the world but has also left hundreds with lingering symptoms or completely new symptoms weeks after recovery. Much is unknown about what causes these symptoms and how long they last. But with nearly 740,000 cases of COVID reported in New York City since last March--and 28 million in the United States--physicians are increasingly seeing these "long-haulers" in their practices. "Over the course of the summer, we started getting a sense of what issues these people were having," ...

Redox imaging allows measurement of drug responses in lab-grown cancer samples

Redox imaging allows measurement of drug responses in lab-grown cancer samples
2021-03-22
Organoids are tiny three-dimensional cellular assemblies that are grown in a laboratory from tissue-specific cells. They are particularly interesting to biologists because of their ability to mimic the characteristics of the original tissues. If scientists extract cells from a tumor, then they can grow cancer organoids that mimic the characteristics of the source tumor. This possibility for individual-level studies of tumor properties makes cancer organoids an exciting tool from the perspective of an emerging field called precision cancer medicine. Daniel Gil of the University of Wisconsin ...

New Barrett's esophagus monitoring method could aid in easier and more precise prognoses

New Barretts esophagus monitoring method could aid in easier and more precise prognoses
2021-03-22
CLEVELAND--A new technique for sampling and testing cells from Barrett's esophagus (BE) patients could result in earlier and easier identification of patients whose disease has progressed toward cancer or whose disease is at high risk of progressing toward cancer, according to a collaborative study by investigators at Case Western Reserve University and Johns Hopkins Kimmel Cancer Center (JHKCC). Published in the journal Gastroenterology, the findings show the combination of esophageal "brushing" with a massively parallel sequencing method can provide an accurate assessment of the ...

Healthy sleep may rely on long-overlooked brain cells

2021-03-22
For something we spend one-third of our lives doing, we still understand remarkably little about how sleep works -- for example, why can some people sleep deeply through any disturbance, while others regularly toss and turn for hours each night? And why do we all seem to need a different amount of sleep to feel rested? For decades, scientists have looked to the behavior of the brain's neurons to understand the nature of slumber. Now, though, researchers at UC San Francisco have confirmed that a different type of brain cell that has received far less study -- astrocytes, named for their star-like shape -- can influence how long and how deeply animals sleep. The findings could open new avenues for exploring sleep disorder therapies and help scientists better understand brain diseases linked ...

Large new study reveals rates of brain abnormalities in healthy children

2021-03-22
A large study of brain MRI scans from 11,679 nine- and ten-year-old children reviewed by UC San Francisco neuroradiologists identified potentially life-threatening conditions in 1 in 500 children, and more minor but possibly clinically significant brain abnormalities in 1 out of 25 children. The results provide the best estimates to date of the true incidence of various structural abnormalities in the developing brain, and raise the question of whether all MRI brain imaging obtained during research studies should be reviewed by board-certified radiologists, as was done in this study, in the hopes of saving lives and alerting participants to incidental findings that ought to be medically evaluated. One ...

Negative mood linked to prolonged amygdala activity

Negative mood linked to prolonged amygdala activity
2021-03-22
How the amygdala responds to viewing negative and subsequent neutral stimuli may impact our daily mood, according to new research published in JNeurosci. The amygdala evaluates the environment to find potential threats. If a threat does appear, the amygdala can stay active and respond to new stimuli like they are threatening too. This is helpful when you are in a dangerous situation, but less so when spilling your coffee in the morning keeps you on edge for the rest of the day. In a recent study, Puccetti et al. examined data collected from the "Midlife ...

New study implicates disease-driving B cells in fatty liver disease development

2021-03-22
MINNEAPOLIS/ST.PAUL (03/22/2021) -- New research from the University of Minnesota Medical School suggests that disease-driving B cells, a white blood cell, play a role in the development of non-alcoholic fatty liver disease (NAFLD) - the most common chronic liver condition in the U.S. Their findings could lead to targeted therapies for NAFLD, which currently affects a quarter of the nation and has no FDA-approved treatments. After noticing that patients with the disease showed a large number of inflammatory B cells in their livers, Xavier Revelo, PhD, an assistant professor in the Department of Integrative Biology and Physiology and senior author, began studying B cells in NAFLD. "This disease is increasing in prevalence ...

LAST 30 PRESS RELEASES:

Music-based therapy may improve depressive symptoms in people with dementia

No evidence that substituting NHS doctors with physician associates is necessarily safe

At-home brain speed tests bridge cognitive data gaps

CRF appoints Josep Rodés-Cabau, M.D., Ph.D., as editor-in-chief of structural heart: the journal of the heart team

Violent crime is indeed a root cause of migration, according to new study

Customized smartphone app shows promise in preventing further cognitive decline among older adults diagnosed with mild impairment

Impact of COVID-19 on education not going away, UM study finds

School of Public Health researchers receive National Academies grant to assess environmental conditions in two Houston neighborhoods

Three Speculum articles recognized with prizes

ACM A.M. Turing Award honors two researchers who led the development of cornerstone AI technology

Incarcerated people are disproportionately impacted by climate change, CU doctors say

ESA 2025 Graduate Student Policy Award Cohort Named

Insomnia, lack of sleep linked to high blood pressure in teens

Heart & stroke risks vary among Asian American, Native Hawaiian & Pacific Islander adults

Levels of select vitamins & minerals in pregnancy may be linked to lower midlife BP risk

Large study of dietary habits suggests more plant oils, less butter could lead to better health

Butter and plant-based oils intake and mortality

20% of butterflies in the U.S. have disappeared since 2000

Bacterial ‘jumping genes’ can target and control chromosome ends

Scientists identify genes that make humans and Labradors more likely to become obese

Early-life gut microbes may protect against diabetes, research in mice suggests

Study raises the possibility of a country without butterflies

Study reveals obesity gene in dogs that is relevant to human obesity studies

A rapid decline in US butterfly populations

Indigenous farming practices have shaped manioc’s genetic diversity for millennia

Controlling electrons in molecules at ultrafast timescales

Tropical forests in the Americas are struggling to keep pace with climate change

Brain mapping unlocks key Alzheimer’s insights

Clinical trial tests novel stem-cell treatment for Parkinson’s disease

Awareness of rocky mountain spotted fever saves lives

[Press-News.org] Reading minds with ultrasound: A less-invasive technique to decode the brain's intentions