PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Hubble spots double quasars in merging galaxies

Hubble spots double quasars in merging galaxies
2021-04-06
(Press-News.org) NASA's Hubble Space Telescope is "seeing double." Peering back 10 billion years into the universe's past, Hubble astronomers found a pair of quasars that are so close to each other they look like a single object in ground-based telescopic photos, but not in Hubble's crisp view.

The researchers believe the quasars are very close to each other because they reside in the cores of two merging galaxies. The team went on to win the "daily double" by finding yet another quasar pair in another colliding galaxy duo.

A quasar is a brilliant beacon of intense light from the center of a distant galaxy that can outshine the entire galaxy. It is powered by a supermassive black hole voraciously feeding on inflating matter, unleashing a torrent of radiation.

"We estimate that in the distant universe, for every 1,000 quasars, there is one double quasar. So finding these double quasars is like finding a needle in a haystack," said lead researcher Yue Shen of the University of Illinois at Urbana-Champaign.

The discovery of these four quasars offers a new way to probe collisions among galaxies and the merging of supermassive black holes in the early universe, researchers say.

Quasars are scattered all across the sky and were most abundant 10 billion years ago. There were a lot of galaxy mergers back then feeding the black holes. Therefore, astronomers theorize there should have been many dual quasars during that time.

"This truly is the first sample of dual quasars at the peak epoch of galaxy formation with which we can use to probe ideas about how supermassive black holes come together to eventually form a binary," said research team member Nadia Zakamska of Johns Hopkins University in Baltimore, Maryland.

The team's results appeared in the April 1 online issue of the journal Nature Astronomy.

Shen and Zakamska are members of a team that is using Hubble, the European Space Agency's Gaia space observatory, and the Sloan Digital Sky Survey, as well as several ground-based telescopes, to compile a robust census of quasar pairs in the early universe.

The observations are important because a quasar's role in galactic encounters plays a critical part in galaxy formation, the researchers say. As two close galaxies begin to distort each other gravitationally, their interaction funnels material into their respective black holes, igniting their quasars.

Over time, radiation from these high-intensity "light bulbs" launch powerful galactic winds, which sweep out most of the gas from the merging galaxies. Deprived of gas, star formation ceases, and the galaxies evolve into elliptical galaxies.

"Quasars make a profound impact on galaxy formation in the universe," Zakamska said. "Finding dual quasars at this early epoch is important because we can now test our long-standing ideas of how black holes and their host galaxies evolve together."

Astronomers have discovered more than 100 double quasars in merging galaxies so far. However, none of them is as old as the two double quasars in this study.

The Hubble images show that quasars within each pair are only about 10,000 light-years apart. By comparison, our Sun is 26,000 light-years from the supermassive black hole in the center of our galaxy.

The pairs of host galaxies will eventually merge, and then the quasars also will coalesce, resulting in an even more massive, single solitary black hole.

Finding them wasn't easy. Hubble is the only telescope with vision sharp enough to peer back to the early universe and distinguish two close quasars that are so far away from Earth. However, Hubble's sharp resolution alone isn't good enough to find these dual light beacons.

Astronomers first needed to figure out where to point Hubble to study them. The challenge is that the sky is blanketed with a tapestry of ancient quasars that flared to life 10 billion years ago, only a tiny fraction of which are dual. It took an imaginative and innovative technique that required the help of the European Space Agency's Gaia satellite and the ground-based Sloan Digital Sky Survey to compile a group of potential candidates for Hubble to observe.

Located at Apache Point Observatory in New Mexico, the Sloan telescope produces three-dimensional maps of objects throughout the sky. The team pored through the Sloan survey to identify the quasars to study more closely.

The researchers then enlisted the Gaia observatory to help pinpoint potential double-quasar candidates. Gaia measures the positions, distances, and motions of nearby celestial objects very precisely. But the team devised a new, innovative application for Gaia that could be used for exploring the distant universe. They used the observatory's database to search for quasars that mimic the apparent motion of nearby stars. The quasars appear as single objects in the Gaia data. However, Gaia can pick up a subtle, unexpected "jiggle" in the apparent position of some of the quasars it observes.

The quasars aren't moving through space in any measurable way, but instead their jiggle could be evidence of random fluctuations of light as each member of the quasar pair varies in brightness. Quasars flicker in brightness on timescales of days to months, depending on their black hole's feeding schedule.

This alternating brightness between the quasar pair is similar to seeing a railroad crossing signal from a distance. As the lights on both sides of the stationary signal alternately flash, the sign gives the illusion of "jiggling."

When the first four targets were observed with Hubble, its crisp vision revealed that two of the targets are two close pairs of quasars. The researchers said it was a "light bulb moment" that verified their plan of using Sloan, Gaia, and Hubble to hunt for the ancient, elusive double powerhouses.

Team member Xin Liu of the University of Illinois at Urbana-Champaign called the Hubble confirmation a "happy surprise." She has long hunted for double quasars closer to Earth using different techniques with ground-based telescopes. "The new technique can not only discover dual quasars much further away, but it is much more efficient than the methods we've used before," she said.

Their Nature Astronomy article is a "proof of concept that really demonstrates that our targeted search for dual quasars is very efficient," said team member Hsiang-Chih Hwang, a graduate student at Johns Hopkins University and the principal investigator of the Hubble program. "It opens a new direction where we can accumulate a lot more interesting systems to follow up, which astronomers weren't able to do with previous techniques or datasets."

The team also obtained follow-up observations with the National Science Foundation NOIRLab's Gemini telescopes. "Gemini's spatially-resolved spectroscopy can unambiguously reject interlopers due to chance superpositions from unassociated star-quasar systems, where the foreground star is coincidentally aligned with the background quasar," said team member Yu-Ching Chen, a graduate student at the University of Illinois at Urbana-Champaign.

Although the team is convinced of their result, they say there is a slight chance that the Hubble snapshots captured double images of the same quasar, an illusion caused by gravitational lensing. This phenomenon occurs when the gravity of a massive foreground galaxy splits and amplifies the light from the background quasar into two mirror images. However, the researchers think this scenario is highly unlikely because Hubble did not detect any foreground galaxies near the two quasar pairs.

Galactic mergers were more plentiful billions of years ago, but a few are still happening today. One example is NGC 6240, a nearby system of merging galaxies that has two and possibly even three supermassive black holes. An even closer galactic merger will occur in a few billion years when our Milky Way galaxy collides with neighboring Andromeda galaxy. The galactic tussle would likely feed the supermassive black holes in the core of each galaxy, igniting them as quasars.

Future telescopes may offer more insight into these merging systems. NASA's James Webb Space Telescope, an infrared observatory scheduled to launch later this year, will probe the quasars' host galaxies. Webb will show the signatures of galactic mergers, such as the distribution of starlight and the long streamers of gas pulled from the interacting galaxies.

INFORMATION:

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

Artist's Illustration: NASA, ESA, and J. Olmsted (STScI) Science: NASA, ESA, Y. Shen and X. Liu (University of Illinois, Urbana-Champaign), and H.-C. Hwang and N. Zakamska (Johns Hopkins University)

Media Contacts:

Claire Andreoli
NASA's Goddard Space Flight Center, Greenbelt, Maryland
301-286-1940
claire.andreoli@nasa.gov

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

Science Contacts: Yue Shen / Xin Liu
University of Illinois, Urbana-Champaign
shenyue@illinois.edu / xinliuxl@illinois.edu

Hsiang-Chih Hwang / Nadia Zakamska
Johns Hopkins University, Baltimore, Maryland
hchwang@jhu.edu / zakamska@jhu.edu


[Attachments] See images for this press release:
Hubble spots double quasars in merging galaxies

ELSE PRESS RELEASES FROM THIS DATE:

Breast cancer survivors' fear of cancer returning linked to genomic testing, psychological factors

2021-04-06
Breast cancer survivors with a higher risk of cancer recurrence based on genomic testing may experience greater fear of their cancer returning, according to a new study led by researchers at NYU Rory Meyers College of Nursing. However, psychological factors such as anxiety are the best predictors of survivors' fear of their cancer recurring. "Although genomic test results were associated with fear of cancer recurrence, our findings highlight that distressing, but treatable, psychological factors fuel cancer survivors' fear of recurrence," said Maurade Gormley, PhD, RN, an assistant professor and faculty fellow at NYU Meyers and the lead author of the study, which was published in the journal Psycho-Oncology. For breast cancer survivors, fear and worry that ...

Competing for high status speeds up aging in male baboons

Competing for high status speeds up aging in male baboons
2021-04-06
Battling other male baboons to achieve high social status comes with physiological costs that accelerate aging, according to study published today in eLife. The findings suggest that current life circumstances may be more important contributors to premature aging than early life hardship, at least in baboons. Chemical changes to DNA, also called epigenetic changes, can be used as a kind of 'clock' to measure aging. While these epigenetic changes usually correspond with age, they can also be used to detect signs of premature aging. "Environmental stressors can make the clock tick faster, so that some individuals appear biologically older than their actual age and ...

Digital breast tomosynthesis reduces rate of interval cancers

Digital breast tomosynthesis reduces rate of interval cancers
2021-04-06
OAK BROOK, Ill. - Screening with digital breast tomosynthesis (DBT) reduces the rate of interval breast cancers compared to screening with digital mammography, according to a study published in Radiology. The study adds to a growing body of evidence supporting DBT as a breast cancer screening tool with important advantages over mammography. DBT works by capturing a series of X-ray images of the breast from different angles. Previous research has shown that it has a higher sensitivity for breast cancer detection than digital mammography. The impact of these additional DBT-detected cancers is not fully understood. ...

Chest CT illuminates mortality risk in people with COPD

Chest CT illuminates mortality risk in people with COPD
2021-04-06
OAK BROOK, Ill. - Body composition information derived from routine chest CTs can provide important information on the overall health of people with chronic obstructive pulmonary disease (COPD), including their risk of all-cause mortality, according to a study published in Radiology. COPD is a group of chronic, progressive lung diseases like emphysema and chronic bronchitis that affect about 30 million people in the United States alone. It is frequently associated with obesity and sarcopenia, a loss of muscle mass and strength. Obesity is associated with lower mortality in patients with COPD. The longer survival rates of obese patients compared to leaner counterparts, a phenomenon ...

Japanese consumers more concerned about gene-editing of livestock than of vegetables, survey shows

Japanese consumers more concerned about gene-editing of livestock than of vegetables, survey shows
2021-04-06
A statistically rigorous survey of Japanese consumers has found that they have more negative opinions about the use of new gene-editing techniques on livestock than they do about use of the same technologies on vegetables. The survey findings were reported in the journal BMC CABI Agriculture and Bioscience on March 31st, 2021. Because humans tend to feel closer to animals than plants, and commonly express feelings regarding animal welfare but not plant welfare, the researchers, led by Naoko Kato-Nitta, a research scientist at Tokyo's Joint Support Center for Data Science Research and Institute of Statistical ...

How the fly selects its reproductive male

How the fly selects its reproductive male
2021-04-06
Even a well-characterized genome, such as that of the Drosophila the so-called fruit fly, still holds surprises. A team from the University of Geneva (UNIGE), Switzerland, in collaboration with Cornell University (USA) and the University of Groningen (Netherlands), has discovered an RNA coding for a micro-peptide - a very small protein - that plays a crucial role in the competition between spermatozoa from different males with which the female mates. In addition to shedding new light on this biological mechanism, this work, to be read in the journal Proceedings of the National Academy of Sciences (PNAS), highlights the importance of small peptides, a class of proteins that ...

TPU scientists first obtain high-entropy carbide in electric arc plasma

2021-04-06
Scientists of Tomsk Polytechnic University have synthetized high-entropy carbide consisting of five various metals using a vacuum-free electric arc method. The research findings are published in the Journal of Engineering Physics and Thermophysics. High-entropy carbides are a new class of materials simultaneously consisting of four or more various metals and carbon. Their main feature lies in the capability to endure high temperatures and energy flux densities. Combining various elements in the composition, it is possible to obtain the required mix of features ...

Microbial production of a natural red colorant carminic acid

Microbial production of a natural red colorant carminic acid
2021-04-06
A research group at KAIST has engineered a bacterium capable of producing a natural red colorant, carminic acid, which is widely used for food and cosmetics. The research team reported the complete biosynthesis of carminic acid from glucose in engineered Escherichia coli. The strategies will be useful for the design and construction of biosynthetic pathways involving unknown enzymes and consequently the production of diverse industrially important natural products for the food, pharmaceutical, and cosmetic industries. Carminic acid is a natural red colorant widely being used for products such as strawberry milk and lipstick. However, carminic acid has been produced ...

Distinctive MJO activity during 2015/2016 super El Niño

Distinctive MJO activity during 2015/2016 super El Niño
2021-04-06
El Niño-Southern Oscillation (ENSO) is one of the most prominent ocean-atmosphere interactions that varies year-to-year. This process exerts significant impacts on global weather and climate. El Niño is the warm phase of ENSO, which can be strong, moderate, or even weak. Within the past four decades, climatologists observed three super El Niño events (1982/83, 1997/98 and 2015/16). These extreme phases impacted global climate far more than moderate or weak events. El Niño has a profound effect on the Madden-Julian Oscillation (MJO), which ...

Silencing vibrations in the ground and sounds underwater

2021-04-06
Metamaterials that can control the refractive direction of light or absorb it to enable invisible cloaks are gaining attention. Recently, a research team at POSTECH has designed a metasurface that can control the acoustic or elastic waves. It is gaining attention as it can be used to escape from threatening earthquakes or build submarines untraceable to SONAR. Professor Junsuk Rho of POSTECH's departments of mechanical engineering and chemical engineering and Ph.D. candidate Dongwoo Lee of the Department of Mechanical Engineering in collaboration with Professor Jensen Li of HKUST have designed an artificial structure that can control not only the domain of underwater sound but also of vibration. The research team has presented an ...

LAST 30 PRESS RELEASES:

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

[Press-News.org] Hubble spots double quasars in merging galaxies