PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Simple chemistry will enhance the sustainability of concrete production

Simple chemistry will enhance the sustainability of concrete production
2021-04-14
(Press-News.org) Tokyo, Japan - Researchers at the Institute of Industrial Science, a part of The University of Tokyo, have developed a new method of producing concrete without cement. They have directly bonded sand particles via a simple reaction in alcohol with a catalyst. This may help both to slash carbon emissions and to construct buildings and structures in desert regions, even on the Moon or Mars.

Concrete consists of two parts: the aggregate (typically made of sand and gravel) and cement (responsible for 8% of total global CO2 emissions). Despite there being a huge amount of sand in the world, the availability of sand for concrete production is fairly limited because sand particles must have a specific size distribution to provide flowability to concrete.

"In concrete, cement is used to bond sand and gravel. Some researchers are investigating how more cement can be replaced with other materials, such as fly ash and blast furnace slag, to reduce CO2 emissions, but this approach is unsustainable because the supply of these materials is decreasing owing to reduced use of thermal power systems and increased use of electrical furnace steel," explains Yuya Sakai, lead author. Therefore, a new approach is required to produce concrete from inexhaustible materials with less environmental load. "Researchers can produce tetraalkoxysilane from sand through a reaction with alcohol and a catalyst by removing water, which is a byproduct of the reaction. Our idea was to leave the water to shift the reaction back and forth from sand to tetraalkoxysilane, to bond the sand particles with each other."

The researchers placed a cup made of copper foil in a reaction vessel with sand and materials, and systematically varied the reaction conditions, such as the amounts of sand, alcohol, catalyst, and dehydration agent; the heating temperature; and the reaction time. Finding the right proportion of sand and chemicals was critical to obtain a product with sufficient strength.

"We obtained sufficiently strong products with, for example, silica sand, glass beads, desert sand, and simulated moon sand," says second author Ahmad Farahani. "These findings can promote a move toward a greener and more economical construction industry everywhere on Earth. Our technique does not require specific sand particles used in conventional construction. This will also help address the issues of climate change and space development."

Additionally, the product is likely to have better durability than that of conventional concrete because cement paste, which is relatively weak against chemical attack and exhibits large volume changes due to temperature and humidity, is not included in the product.

INFORMATION:

The work will be published in Seisan Kenkyu, Vol. 75, 2021 as "Production of Hardened Body by Direct Bonding of Sand Particles."

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and realworld applications.


[Attachments] See images for this press release:
Simple chemistry will enhance the sustainability of concrete production

ELSE PRESS RELEASES FROM THIS DATE:

New study reveals charge transfer at interface of spinel oxide and ceria during CO oxidation

New study reveals charge transfer at interface of spinel oxide and ceria during CO oxidation
2021-04-14
A recent study has unveiled the reason behind the exceptional catalytic performance of non-noble metal-base mixed catalysts. This is thanks to a new synthetic strategy for the production of cube-shaped catalysts that could further simplify the structure of complex catalysts. This breakthrough has been led by Professor Kwangjin An and his research team in the School of Energy and Chemical Engineering at UNIST, in collaboration with Professor Taeghwan Hyeon and his research team from Seoul National University. In their study, the researchers found a new principle that active charge transfer, which appears at the interface created between the two types of non-noble ...

Interlayer exciton formation, relaxation, and transport in TMDs van der Waals Heterostructures

Interlayer exciton formation, relaxation, and transport in TMDs van der Waals Heterostructures
2021-04-14
TMDs vdW heterostructures generally possess a type-II band alignment which facilitates the formation of interlayer excitons between the constituent monolayers. Manipulation of the interlayer excitons in TMDs vdW heterostructures hold great promise for developing excitonic integrated circuits that serve as the counterpart of electronic integrated circuits, which allows the photons and excitons transforming between each other and thus bridges the optical communication and signal processing at the integrated circuit. Consequently, numerous researches have been carried out in order to get a deep insight ...

Dynamical machine learning accurately reconstructs volume interiors with limited-angle data

Dynamical machine learning accurately reconstructs volume interiors with limited-angle data
2021-04-14
A wide range of objects, from biological cells to integrated circuits, are tomographically imaged to identify their interior structures. Volumetric reconstruction of the objects' interiors is of practical implications, for instance, quantitative phase imaging of the cells and failure analysis of the circuits to validate their designs. Limiting the tomographic angular range is often desirable to reduce the time of radiation exposure and avoid any devastating effects upon the samples, or even unavoidable due to the structure of objects like in the case of tomosynthesis for mammography. However, tomographic reconstruction from limited angular views is not always welcome in an algorithmic sense, ...

Australian researchers find new way to target deadly childhood cancer

2021-04-14
Research by Australian scientists could pave the way to a new treatment for a currently incurable brain cancer in children called Diffuse Intrinsic Pontine Glioma, or DIPG. Affecting about 20 children in Australia each year, DIPG is a devastating disease with an average survival time of just nine months after diagnosis. The research, led by scientists at Children's Cancer Institute and published this week in the international journal, Cell Reports, offers an exciting new therapeutic approach for the treatment of DIPG by using a new anti-cancer drug. The new drug, CBL0137, is an anti-cancer compound developed from the antimalarial drug quinacrine. The researchers found that CBL0137 directly ...

Worm infections leave African women more vulnerable to STIs

2021-04-14
Intestinal worm infections can leave women in sub-Saharan Africa more vulnerable to sexually-transmitted viral infections, a new study reveals. The rate and severity of sexually-transmitted viral infections (STI) in the region are very high, as are those of worm infections, which when caught in the intestine can change immunity in other parts of the body. Researchers at the Universities of Birmingham and Cape Town led an international team which discovered that intestinal worm infection can change vaginal immunity and increase the likelihood of Herpes simplex virus type 2 (HSV-2) infection - the main cause of genital herpes. ...

Increased risk of liver cancer in patients with non-alcoholic fatty liver

Increased risk of liver cancer in patients with non-alcoholic fatty liver
2021-04-14
Non-alcoholic fatty liver, NAFLD, is associated with several health risks. According to a new registry study led by researchers at Karolinska Institutet in Sweden, NAFLD is linked to a 17-fold increased risk of liver cancer. The findings, published in Hepatology, underscore the need for improved follow-up of NAFLD patients with the goal of reducing the risk of cancer. "In this study with detailed liver histology data, we were able to quantify the increased risk of cancer associated with NAFLD, particularly hepatocellular carcinoma," says first author, Tracey G. Simon, researcher at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, and hepatologist at Massachusetts General Hospital and Harvard ...

Mystery canine illness identified

Mystery canine illness identified
2021-04-14
An outbreak of vomiting among dogs has been traced back to a type of animal coronavirus by researchers. Vets across the country began reporting cases of acute onset prolific vomiting in 2019/20. The Small Animal Veterinary Surveillance Network (SAVSNet) at the University of Liverpool asked vets for help in collecting data, with 1,258 case questionnaires from vets and owners plus 95 clinical samples from 71 animals. Based on this data, a team from the universities of Liverpool, Lancaster, Manchester and Bristol identified the outbreak as most likely to ...

Study: Ag policy in India needs to account for domestic workload

2021-04-14
ITHACA, N.Y. - Women's increased agricultural labor during harvest season, in addition to domestic house care, often comes at the cost of their health, according to new research from the Tata-Cornell Institute for Agriculture and Nutrition (TCI). Programs aimed at improving nutritional outcomes in rural India should account for the tradeoffs that women experience when their agricultural work increases, according to the study, "Seasonal time trade-offs and nutrition outcomes for women in agriculture: Evidence from rural India," which published in the journal Food Policy on March ...

The chillest ape: How humans evolved a super-high cooling capacity

2021-04-14
PHILADELPHIA-- Humans have a uniquely high density of sweat glands embedded in their skin--10 times the density of chimpanzees and macaques. Now, researchers at Penn Medicine have discovered how this distinctive, hyper-cooling trait evolved in the human genome. In a study published today in the Proceedings of the National Academy of Sciences of the USA, researchers showed that the higher density of sweat glands in humans is due, to a great extent, to accumulated changes in a regulatory region of DNA--called an enhancer region--that drives the expression of a sweat gland-building gene, explaining why humans are the sweatiest ...

TGen identifies gene that could help prevent or delay onset of Alzheimer's disease

2021-04-14
PHOENIX, Ariz. -- April 13, 2021 -- Findings of a study by the Translational Genomics Research Institute (TGen), an affiliate of City of Hope, suggest that increasing expression of a gene known as ABCC1 could not only reduce the deposition of a hard plaque in the brain that leads to Alzheimer's disease, but might also prevent or delay this memory-robbing disease from developing. ABCC1, also known as MRP1, has previously been shown in laboratory models to remove a plaque-forming protein known as amyloid beta (Abeta) from specialized endothelial cells that surround and protect ...

LAST 30 PRESS RELEASES:

NASA’s Parker Solar Probe makes history with closest pass to Sun

Are we ready for the ethical challenges of AI and robots?

Nanotechnology: Light enables an "impossibile" molecular fit

Estimated vaccine effectiveness for pediatric patients with severe influenza

Changes to the US preventive services task force screening guidelines and incidence of breast cancer

Urgent action needed to protect the Parma wallaby

Societal inequality linked to reduced brain health in aging and dementia

Singles differ in personality traits and life satisfaction compared to partnered people

President Biden signs bipartisan HEARTS Act into law

Advanced DNA storage: Cheng Zhang and Long Qian’s team introduce epi-bit method in Nature

New hope for male infertility: PKU researchers discover key mechanism in Klinefelter syndrome

Room-temperature non-volatile optical manipulation of polar order in a charge density wave

Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum

Unlocking the Future of Superconductors in non-van-der Waals 2D Polymers

Starlight to sight: Breakthrough in short-wave infrared detection

Land use changes and China’s carbon sequestration potential

PKU scientists reveals phenological divergence between plants and animals under climate change

Aerobic exercise and weight loss in adults

Persistent short sleep duration from pregnancy to 2 to 7 years after delivery and metabolic health

Kidney function decline after COVID-19 infection

Investigation uncovers poor quality of dental coverage under Medicare Advantage

Cooking sulfur-containing vegetables can promote the formation of trans-fatty acids

How do monkeys recognize snakes so fast?

Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology

Fish-friendly dentistry: New method makes oral research non-lethal

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

[Press-News.org] Simple chemistry will enhance the sustainability of concrete production