INFORMATION:
Scientists program microalgae's 'oil factory' to produce various oils
2021-04-14
(Press-News.org) By combining the 'chassis' of an oil-producing microalgae with genes from a Cuphea plant, scientists from the Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS), can turn the algae into a microbial cell factory that can produce various oils with different properties.
The study was published in Metabolic Engineering on April 3.
Oils are composed of fatty acids, and fatty acids are composed in part of chains of carbon atoms. The length of these carbon chains can impact the physical properties of the fatty acid and thus the property of the oil. The researchers now can program the algal 'factory' by designing the algae to produce fatty acids of different lengths.
Oleaginous microalgae are often attractive candidates as "cell factories" due to their rapid reproduction rates and ability to produce large volumes of fatty acids.
But the chain-length of the fatty acids produced by these self-replicating photosynthetic factories is very rigidly specific to a given species. Typically, one type of microalgae would be great at producing fatty acids of some lengths, but not others.
In microalgae, fatty acids are synthesized by a particular type of enzyme, called the fatty acid synthase, or FAS. And the chain length of these fatty acids is in turn determined by the action of another type of enzyme, called an Acyl-ACP thioesterase, or simply a TE. Different types of TEs from different species specialize in different chain lengths.
"This is far from ideal as a product-flexible cell factory to deliver the plethora of chain lengths needed at will for various industrially relevant fatty acids, as you would have to constantly swap out the species that is doing the producing," said WANG Qintao, a researcher at Single-Cell Center, the first author of the study.
However, the research team found that the microalgae Nannochloropsis oceanica (N. oceanica) had a TE enzyme pathway that can vary the chain length to produce three variations on some of the longer fatty acids, but can't vary the chain length to produce multiple mid-length fatty acids.
So they added the genes for a similar TE enzyme pathway from a Cuphea plant - one that was good at boosting production of fatty acids with those mid-length chains. Protein engineers led by FENG Yanbin and XUE Song, now at Dalian University of Technology, tuned the enzymes so that fatty acids of a different chain length can be produced. The Cuphea genus is home to many species of plants also known for their oil production capabilities.
But by combining the enzymes, the team showed that it was possible to ratchet the fatty acid chain up and down a broad range of desired lengths, and within the N. oceanica 'factory'.
The researchers hope that this basic framework will now accelerate the development of designer oils of various fatty acid chain lengths within other species of Nannochloropsis and other oleaginous microalgae.
"By directly turning CO2, sunlight and seawater into designer oils, such microalgae cell factories are carbon negative, thus farming them at a large scale can help to save our planet from global warming," added XU Jian, Director of Single-Cell Center, and one senior author of the study.
ELSE PRESS RELEASES FROM THIS DATE:
ER visits for suicidal behavior declined during the first 8 months of pandemic, U-M study shows
2021-04-14
While people may expect suicide rates to rise during a worldwide crisis such as the COVID-19 pandemic, a University of Michigan study suggests the onset of the pandemic and state of emergency executive orders likely did not increase suicide-related behavior in the early months of the outbreak.
The report, led by U-M researchers Rachel Bergmans and Peter Larson, found that emergency room visits related to suicide attempt and self-harm decreased by 40% during the first eight months of Michigan's lockdown. Their results are published in the Journal of Epidemiology and Community Health.
The study compared emergency room reports of suicide attempt and intentional self-harm at a hospital in Michigan's Washtenaw County during the first 8 months of the ...
Plasma device designed for consumers can quickly disinfect surfaces
2021-04-14
The COVID-19 pandemic has cast a harsh light on the urgent need for quick and easy techniques to sanitize and disinfect everyday high-touch objects such as doorknobs, pens, pencils, and personal protective gear worn to keep infections from spreading. Now scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory and the New Jersey Institute of Technology (NJIT) have demonstrated the first flexible, hand-held, device based on low-temperature plasma -- a gas that consists of atoms, molecules, and free-floating electrons ...
Birds take tRNA efficiency to new heights
2021-04-14
Birds have been shaped by evolution in many ways that have made them distinct from their vertebrate cousins. Over millions of years of evolution, our feathered friends have taken to the skies, accompanied by unique changes to their skeleton, musculature, respiration, and even reproductive systems. Recent genomic analyses have identified another unique aspect of the avian lineage: streamlined genomes. Although bird genomes contain roughly the same number of protein-coding genes as other vertebrates, their genomes are smaller, containing less noncoding DNA. Scientists are still exploring the potential consequences of this genome reduction on bird biology. In a new ...
Suppression of COVID-19 waves reflects time-dependent social activity, not herd immunity
2021-04-14
UPTON, NY--Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the University of Illinois Urbana-Champaign (UIUC) have developed a new mathematical model for predicting how COVID-19 spreads. This model not only accounts for individuals' varying biological susceptibility to infection but also their levels of social activity, which naturally change over time. Using their model, the team showed that a temporary state of collective immunity--what they coined "transient collective immunity"--emerged during early, fast-paced stages of the epidemic. However, subsequent "waves," ...
Why do some alloys become stronger at room temperature?
2021-04-14
An alloy is typically a metal that has a few per cent of at least one other element added. Some aluminium alloys have a seemingly strange property.
"We've known that aluminium alloys can become stronger by being stored at room temperature - that's not new information," says Adrian Lervik, a physicist at the Norwegian University of Science and Technology (NTNU).
The German metallurgist Alfred Wilm discovered this property way back in 1906. But why does it happen? So far the phenomenon has been poorly understood, but now Lervik and his colleagues from NTNU and SINTEF, the largest independent research institute in Scandinavia, have tackled that question.
Lervik recently completed his doctorate at NTNU's Department of Physics. His work explains an important part of this ...
Air pollution may affect severity and hospitalization in COVID-19 patients
2021-04-14
Patients who have preexisting respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD) and live in areas with high levels of air pollution have a greater chance of hospitalization if they contract COVID-19, says a University of Cincinnati researcher.
Angelico Mendy, MD, PhD, assistant professor of environmental and public health sciences, at the UC College of Medicine, looked at the health outcomes and backgrounds of 1,128 COVID-19 patients at UC Health, the UC-affiliated health care system in Greater Cincinnati.
Mendy led a team of researchers in an individual-level study which used a statistical model to evaluate the association between long-term exposure to particulate matter less or equal to 2.5 micrometers -- it refers to a mixture of tiny particles and ...
Protein found to control drivers of normal growth and cancer
2021-04-14
Researchers have found a long-sought enzyme that prevents cancer by enabling the breakdown of proteins that drive cell growth, and that causes cancer when disabled.
Publishing online in Nature on April 14, the new study revolves around the ability of each human cell to divide in two, with this process repeating itself until a single cell (the fertilized egg) becomes a body with trillions of cells. For each division, a cell must follow certain steps, most of which are promoted by proteins called cyclins.
Led by researchers at NYU Grossman School of Medicine, the work revealed that an enzyme called AMBRA1 labels a key class of cyclins for destruction by cellular machines that break down proteins. The work finds that the enzyme's control of cyclins is essential ...
Backyard bird feeding sparks a songbird 'reverse migration'
2021-04-14
ITHACA, N.Y. - Eurasian Blackcaps are spunky and widespread warblers that breed across much of Europe. Many of them migrate south to the Mediterranean region and Africa after the breeding season. But thanks to a changing climate and an abundance of food resources offered by people across the United Kingdom and Ireland, some populations of Blackcaps have recently been heading north for the winter, spending the colder months in backyard gardens of the British Isles.
New research published this week in Global Change Biology shows some of the ways that bird feeders, fruit-bearing plants, and a warming world are changing both the movements and the physiology of the Blackcaps that spend the winter in Great Britain and Ireland.
"Many migratory birds are ...
Telling sunbathers what they don't want to hear: Tanning is bad
2021-04-14
COLUMBUS, Ohio - Most young women already know that tanning is dangerous and sunbathe anyway, so a campaign informing them of the risk should take into account their potential resistance to the message, according to a new study.
Word choice and targeting a specific audience are part of messaging strategy, but there is also psychology at play, researchers say - especially when the message is telling people something they don't really want to hear.
"A lot of thought goes into the content, but possibly less thought goes into the style," said Hillary Shulman, senior author of the study and an assistant ...
Significant spread of all coronavirus variants tracked in Houston area
2021-04-14
Philadelphia, April 14, 2021 - In late 2020, several concerning SARS-CoV-2 variants emerged globally. They are believed to be more easily transmissible, and there is concern that some may reduce the effectiveness of antibody treatments and vaccines. An extensive genome sequencing program run by the Houston Methodist health system has identified all six of the currently identified SARS-CoV-2 variants in their patients. A new study appearing in The American Journal of Pathology, published by Elsevier, finds that the variants are widely spread across the Houston metropolitan area.
"Before the SARS-CoV-2 virus arrived in Houston, we planned an integrated strategy to confront ...