PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A milestone in muscular dystrophy therapy

A milestone in muscular dystrophy therapy
2021-04-30
(Press-News.org) Muscle stem cells enable our muscle to build up and regenerate over a lifetime through exercise. But if certain muscle genes are mutated, the opposite occurs. In patients suffering from muscular dystrophy, the skeletal muscle already starts to weaken in childhood. Suddenly, these children are no longer able to run, play the piano or climb the stairs, and often they are dependent on a wheelchair by the age of 15. Currently, no therapy for this condition exists.

"Now, we are able to access these patients' gene mutations using CRISPR-Cas9 technology," explains Professor Simone Spuler, head of the Myology Lab at the Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin. "We care for more than 2,000 patients at the Charité outpatient clinic for muscle disorders, and quickly recognized the potential of the new technology." The researchers immediately started working with some of the affected families, and have now presented their results in the journal JCI Insight. In the families studied, the parents were healthy and had no idea they possessed a mutated gene. The children all inherited a copy of the disease mutation from both parents.

Edited human muscle stem cells developed into muscle fibers in mice

The term "muscular dystrophy" is used to refer to some 50 different diseases. "They all take the same course, but differ due to the mutation of different genes," explains Spuler. "And even within the genes, different sites can be mutated." Following a genomic analysis of all patients, the researchers chose one family because of their particular form of the disease: Limb-girdle muscular dystrophy 2D/R3 is relatively common, progresses rapidly, and has a suitable docking site for the "genetic scissors" close to the mutation on the DNA.

For the study, the researchers took a sample of muscle tissue from a ten-year-old patient, isolated the stem cells, multiplied these in vitro, and used base editing to replace a base pair at the mutated site. They then injected the edited muscle stem cells into mouse muscles, which can tolerate foreign human cells. These multiplied in the rodent and most developed into muscle fibers. "With this, we were able to show for the first time that it is possible to replace diseased muscle cells with healthy ones," says Spuler. Following further tests, the repaired stem cells will be reintroduced to the patient.

Base editing - a sophisticated technique

Base editing is a newer and highly sophisticated variant of the CRISPR-Cas9 gene-editing tool. Whereas in the "classic" method, both strands of DNA are cut by these molecular scissors, the Cas enzymes used for base editing merely snip off the residual glucose from a particular base and attach a different one, thus creating a different base at the targeted site. "This tool works more like tweezers than scissors, and is perfect for carrying out targeted point mutations in a gene," says Dr. Helena Escobar, a molecular biologist in Spuler's team. "It is also a much safer method, because unwanted changes are extremely rare. In the genetically repaired muscle stem cells, we have not witnessed any misediting at unintended regions of the genome." Escobar is the study's lead author and the one who developed the technique for the muscle cells.

Autologous cell therapy - which involves removing a patient's own stem cells, editing them outside the body and then injecting them back into the muscle - will not enable sufferers who are already wheelchair-bound to walk again. "We cannot repair muscle that has already atrophied and been replaced by connective tissue," Spuler stresses. And the number of cells that can be edited in vitro is also limited. However, the study provides the first proof that a form of therapy may even be possible for a group of previously incurable diseases, and it could be used to repair small muscle defects, such as those in the finger flexor.

One step closer to a cure

But this is just the first step. "The next milestone will be to find a way to inject the base editor directly into the patient. Once inside the body, it would 'swim' around for a short while, edit all the muscle stem cells, and then quickly break down again." The team wants to start the first trials in a mouse model soon. If this also works, newborns could be tested for corresponding gene mutations in the future and the curative therapy could be initiated at a time when comparatively few cells would need to be edited.

So, what might an in vivo therapy for muscular dystrophy look like in concrete terms? This is something that scientists have been testing on animal models for some time using viral vectors. However, Helena Escobar explains that because these vectors remain in the body for too long, the risk of misediting and toxic effects is too high. "An alternative would be for mRNA molecules that contain the information for the editor to synthesize the tools in vivo," says the molecular biologist. "mRNA breaks down very quickly in the body, so the therapeutic enzymes can only remain in an active state for a short time." The therapy could probably also be repeated, if necessary. "We do not yet know whether this would need to be a therapy cycle involving several applications."

This therapeutic avenue would mean that, unlike with autologous cell therapy, not every patient would need to be treated individually. For each form of muscle therapy, one "tool" would be sufficient to cure muscle atrophy before major damage even occurred. But, for now, that is still a long way off.

INFORMATION:

Scientific contacts

Prof. Simone Spuler
Experimental and Clinical Research Center (ECRC)
Myology Lab
+49 30 4505-40501
simone.spuler@charite.de or simone.spuler@mdc-berlin.de

Dr. Helena Escobar
Experimental and Clinical Research Center (ECRC)
Myology Lab
+49 30 4505-540526
helena.escobar@charite.de or Helena.escobar@mdc-berlin.de

The Max Delbrück Center for Molecular Medicine (MDC)

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) was founded in Berlin in 1992. It is named for the German-American physicist Max Delbrück, who was awarded the 1969 Nobel Prize in Physiology and Medicine. The MDC's mission is to study molecular mechanisms in order to understand the origins of disease and thus be able to diagnose, prevent and fight it better and more effectively. In these efforts the MDC cooperates with the Charité - Universitätsmedizin Berlin and the Berlin Institute of Health (BIH ) as well as with national partners such as the German Center for Cardiovascular Research and numerous international research institutions. More than 1,600 staff and guests from nearly 60 countries work at the MDC, just under 1,300 of them in scientific research. The MDC is funded by the German Federal Ministry of Education and Research (90 percent) and the State of Berlin (10 percent), and is a member of the Helmholtz Association of German Research Centers. http://www.mdc-berlin.de

The Experimental and Clinical Research Center (ECRC)

The Experimental and Clinical Research Center (ECRC) is an institutional cooperation and a joint research structure of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and the Charité - Universitätsmedizin Berlin, founded in 2007. The aim of the ECRC is to expand and strengthen interdisciplinary activities between basic and clinical researchers and to shorten the pathway from discovery to clinical application. The ECRC is situated at the science campus in Berlin-Buch and provides unique conditions for patient-oriented research and clinical studies in a research-driven environment.


[Attachments] See images for this press release:
A milestone in muscular dystrophy therapy

ELSE PRESS RELEASES FROM THIS DATE:

Vaccines bring us closer

Vaccines bring us closer
2021-04-30
Effectively and safely protecting against disease--this is what makes vaccines a vital and successful public health tool that saves lives and safeguards health and well-being. Today, vaccines shield us from more than 20 life-threatening diseases. Each year, between 2 to 3 million lives are saved by immunisation against diseases like diphtheria, tetanus, pertussis, influenza or measles [1]. However, several vaccines such as the one against measles can only reach their full potential--protecting not just those who are immunised, but also those who might not be eligible for vaccination--if ...

Latest observations by MUSER help clarify solar eruptions

Latest observations by MUSER help clarify solar eruptions
2021-04-30
Prof. YAN Yihua and his research team from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) recently released detailed results of observations by the new generation solar radio telescope--Mingantu Spectral Radio Heliograph (MUSER)--from 2014 to 2019. The study was published in Frontiers in Astronomy and Space Sciences on March 29. It may help us better understand the basic nature of solar eruptions. Solar radio bursts are associated with different types of powerful eruptions like solar flares, coronal mass ejections, and various thermal and nonthermal processes. They are prompt indicators of disastrous space weather events. Solar radio observations, especially at centimeter ...

New view of species interactions offers clues to preserve threatened ecosystems

New view of species interactions offers clues to preserve threatened ecosystems
2021-04-30
As the health of ecosystems in regions around the globe declines due to a variety of rising threats, scientists continue to seek clues to help prevent future collapses. A new analysis by scientists from around the world, led by a researcher at the University of California San Diego, is furthering science's understanding of species interactions and how diversity contributes to the preservation of ecosystem health. A coalition of 49 researchers examined a deep well of data describing tree species in forests located across a broad range of countries, ecosystems and latitudes. Information about the 16 forest diversity plots in Panama, China, Sri Lanka, Puerto Rico and other locations--many in remote, inaccessible ...

Researchers develop chip that improves testing and tracing for COVID-19

Researchers develop chip that improves testing and tracing for COVID-19
2021-04-30
Jeremy Edwards, director of the Computational Genomics and Technology (CGaT) Laboratory at The University of New Mexico, and his colleagues at Centrillion Technologies in Palo Alto, Calif. and West Virginia University, have developed a chip that provides a simpler and more rapid method of genome sequencing for viruses like COVID-19. Their research, titled, "Highly Accurate Chip-Based Resequencing of SARS-CoV-2 Clinical Samples" was published recently in the American Chemical Society's Langmuir. As part of the research, scientists created a tiled genome array they developed for rapid and inexpensive full viral genome resequencing and applied their SARS-CoV-2-specific genome tiling array to rapidly and accurately resequenced ...

Clinically viable blood test for donor-derived cell-free DNA

2021-04-30
Boston, MA (April 30, 2021) - A new study, presented today at the AATS 101st Annual Meeting, shows that non-invasive cell-free DNA tests can reduce the need for regular surveillance biopsies to detect early rejection in heart transplant patients. The study was the first of its kind to be performed on both adult and pediatric patients. Pediatric and adult heart transplant recipients were recruited prospectively from eight participating sites and followed longitudinally for at least 12 months with serial plasma samples collected immediately prior to all endomyocardial biopsies. Structured biopsy results and clinical data were collected and monitored by an independent clinical research organization (CRO). For ...

Study finds similar long-term outcomes for mechanically-ventilated COVID-19 patients

2021-04-30
Boston, MA (April 30, 2021) - A new study, presented today at the AATS 101st Annual Meeting, found that severely ill COVID-19 patients treated with ECMO did not suffer worse long-term outcomes than other mechanically-ventilated patients. The multidisciplinary team included cardio thoracic surgeons, critical care doctors, medical staff at long-term care facilities, physical therapists and other specialists, and followed patients at five academic centers: University of Colorado; University of Virginia; University of Kentucky; Johns Hopkins University; and Vanderbilt University. ...

The novel coronavirus' spike protein plays additional key role in illness

The novel coronavirus spike protein plays additional key role in illness
2021-04-30
LA JOLLA--(April 30, 2021) Scientists have known for a while that SARS-CoV-2's distinctive "spike" proteins help the virus infect its host by latching on to healthy cells. Now, a major new study shows that they also play a key role in the disease itself. The paper, published on April 30, 2021, in Circulation Research, also shows conclusively that COVID-19 is a vascular disease, demonstrating exactly how the SARS-CoV-2 virus damages and attacks the vascular system on a cellular level. The findings help explain COVID-19's wide variety of seemingly unconnected complications, and could ...

Move over CRISPR, the retrons are coming

2021-04-30
While the CRISPR-Cas9 gene editing system has become the poster child for innovation in synthetic biology, it has some major limitations. CRISPR-Cas9 can be programmed to find and cut specific pieces of DNA, but editing the DNA to create desired mutations requires tricking the cell into using a new piece of DNA to repair the break. This bait-and-switch can be complicated to orchestrate, and can even be toxic to cells because Cas9 often cuts unintended, off-target sites as well. Alternative gene editing techniques called recombineering instead perform this bait-and-switch ...

Decoding the effect of body mass index on breast cancer

2021-04-30
Medical researchers at Flinders University have established a new link between high body mass index (BMI) and breast cancer survival rates - with clinical data revealing worse outcomes for early breast cancer (EBC) patients and improved survival rates in advanced breast cancer (ABC). In a new study published in a top breast cancer journal- researchers evaluated data from 5 thousand patients with EBC and 3496 with ABC to determine associations between BMI and survival rates across both stages. Researchers say the results present an 'obesity paradox' which will impact the survival outcomes of the 19,807 women and 167 men diagnosed with breast cancer in Australia in 2020. Natansh Modi, a NHMRC PHD Candidate at Flinders University, says understanding the ...

Brazilian Amazon released more carbon than it stored in 2010s

Brazilian Amazon released more carbon than it stored in 2010s
2021-04-30
The Brazilian Amazon rainforest released more carbon than it stored over the last decade - with degradation a bigger cause than deforestation - according to new research. More than 60% of the Amazon rainforest is in Brazil, and the new study used satellite monitoring to measure carbon storage from 2010-2019. The study found that degradation (parts of the forest being damaged but not destroyed) accounted for three times more carbon loss than deforestation. The research team - including INRAE, the University of Oklahoma and the University of Exeter - said large areas of rainforest were degraded or destroyed due to human activity and climate change, leading to carbon loss. The findings, published in Nature Climate Change, also ...

LAST 30 PRESS RELEASES:

Effectiveness and safety of tenofovir amibufenamide in the treatment of chronic hepatitis B: A real-world, multicenter study

Higher costs limit attendance for life changing cardiac rehab

Over 500 patients receive diagnosis through genetic reanalysis

Brain changes in Huntington’s disease decades before diagnosis will guide future prevention trials

U of A astronomers capture unprecedented view of supermassive black hole in action

Astrophysicists reveal structure of 74 exocomet belts orbiting nearby stars in landmark survey

Textbooks need to be rewritten: RNA, not DNA, is the main cause of acute sunburn

Brits still associate working-class accents with criminal behavior – study warns of bias in the criminal justice system

What do you think ‘guilty’ sounds like? Scientists find accent stereotypes influence beliefs about who commits crimes

University of Calgary nursing study envisions child trauma treatment through a Marvel and DC lens

Research on performance optimization of virtual data space across WAN

Researchers reveal novel mechanism for intrinsic regulation of sugar cravings

Immunological face of megakaryocytes

Calorie labelling leads to modest reductions in selection and consumption

The effectiveness of intradialytic parenteral nutrition with ENEFLUID???? infusion

New study reveals AI’s transformative impact on ICU care with smarter predictions and transparent insights

Snakes in potted olive trees ‘tip of the iceberg’ of ornamental plant trade hazards

Climate change driving ‘cost-of-living' squeeze in lizards

Stem Cell Reports seeks applications for its Early Career Scientist Editorial Board

‘Brand new physics’ for next generation spintronics

Pacific Islander teens assert identity through language

White House honors Tufts economist

Sharp drop in mortality after 41 weeks of pregnancy

Flexible electronics integrated with paper-thin structure for use in space

Immune complex shaves stem cells to protect against cancer

In the Northeast, 50% of adult ticks carry Lyme disease carrying bacteria

U of A Cancer Center clinical trial advances research in treatment of biliary tract cancers

Highlighting the dangers of restricting discussions of structural racism

NYU Tandon School of Engineering receives nearly $10 million from National Telecommunications and Information Administration

NASA scientists find new human-caused shifts in global water cycle

[Press-News.org] A milestone in muscular dystrophy therapy