PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Dark matter detection

UD's Singh and collaborators propose repurposing tabletop sensors to search for dark matter

Dark matter detection
2021-05-05
(Press-News.org) Scientists are certain that dark matter exists. Yet, after more than 50 years of searching, they still have no direct evidence for the mysterious substance.

University of Delaware's Swati Singh is among a small group of researchers across the dark matter community that have begun to wonder if they are looking for the right type of dark matter.

"What if dark matter is much lighter than what traditional particle physics experiments are looking for?" said Singh, an assistant professor of electrical and computer engineering at UD.

Now, Singh, Jack Manley, a UD doctoral student, and collaborators at the University of Arizona and Haverford College, have proposed a new way to look for the particles that might make up dark matter by repurposing existing tabletop sensor technology. The team recently reported their approach in a paper published in Physical Review Letters.

Co-authors on the paper include Dalziel Wilson, an assistant professor of optical sciences from Arizona, Mitul Dey Chowdhury, an Arizona doctoral student, and Daniel Grin, an assistant professor of physics at Haverford College.

No ordinary matter Singh explained that if you add up all the things that emit light, such as stars, planets and interstellar gas, it only accounts for about 15% of the matter in the Universe. The other 85% is known as dark matter. It doesn't emit light, but researchers know it exists by its gravitational effects. They also know it isn't ordinary matter, such as gas, dust, stars, planets and us.

"It could be made up of black holes, or it could be made up of something trillions of times smaller than an electron, known as ultralight dark matter" said Singh, a quantum theorist known for her pioneering efforts to push forward mechanical dark matter detection.

One possibility is that dark matter is made up of dark photons, a type of dark matter that would exert a weak oscillating force on normal matter, causing a particle to move back and forth. However, since dark matter is everywhere, it exerts that force on everything, making it hard to measure this movement.

Singh and her collaborators said they think they can overcome this obstacle by using optomechanical accelerometers as sensors to detect and amplify this oscillation.

"If the force is material dependent, by using two objects composed of different materials the amount that they are forced will be different, meaning that you would be able to measure that difference in acceleration between the two materials," said Manley, the paper's lead author.

Wilson, a quantum experimentalist and one of the UD team's collaborators, likened an optomechanical accelerometer to a miniature tuning fork. "It's a vibrating device which, due to its small size, is very sensitive to perturbations from the environment," he said.

Now, the researchers have proposed an experiment using a membrane made of silicon nitride and a fixed beryllium mirror to bounce light between the two surfaces. If the distance between the two materials changes, the researchers would know from the reflected light that dark photons were present because the silicon nitride and beryllium have different material properties.

Collaboration was a key part of developing the experiment's design, according to Manley. He and Singh (theorists) worked with Wilson and Dey Chowdhury (experimentalists) on the theoretical calculations that went into the detailed blueprint for building their proposed tabletop accelerometer sensor. Meanwhile, Grin, a cosmologist, helped shed light on the particle physics aspects of ultralight dark matter, such as why it would be ultralight, why it might couple to materials differently and how it might be produced.

As a theorist, Manley said the opportunity to learn more about how devices work and how experimentalists build things to prove the theories that he and Singh develop has deepened his expertise while simultaneously widening his exposure to possible career paths.

A growing body of work Importantly, this latest work builds on previously published research by the collaborating teams, reported last summer in Physical Review Letters. The paper, which included contributions from former UD graduate student Russell Stump, showed that several existing and near-term laboratory-scale devices are sensitive enough to detect, or rule out, possible particles that could be ultralight dark matter.

The research reported that certain types of ultralight dark matter would connect, or couple, with normal matter in a way that would cause a periodic change in the size of atoms. While small fluctuations in the size of a single atom may be difficult to notice, the effect is amplified in an object composed of many atoms, and further amplification can be achieved if that object is an acoustic resonator. The collaboration evaluated the performance of several resonators made of diverse materials ranging from superfluid helium to single-crystalline sapphire, and found these sensors can be used to detect that dark matter-induced strain signal.

Both projects were supported in part through Singh's funding from the National Science Foundation to explore emerging ideas around using state-of-the-art quantum devices to detect astrophysical phenomena with tabletop technologies that are smaller and less expensive than other methods.

Together, Singh said, these papers extend the body of work on what is known about possible ways to detect dark matter and suggest the possibility of a new generation of table-top experiments.

Singh and Manley are working with other experimental groups, too, to develop additional tabletop sensors to look for such dark matter or other weak astrophysical signals. They also are actively cultivating broader discussions on this topic within the dark matter and quantum sensors communities.

For example, Singh recently discussed transformational instrumentation advances in particle physics detectors at a virtual workshop organized by the Department of Energy's Coordinating Panel for Advanced Detectors (CPAD). She also presented these results at a special workshop during the American Physical Society's April meeting.

"It's an exciting time, and I am learning a lot from the questions posed by scientists from diverse backgrounds at such workshops," said Singh. "But it's worth noting that my most original research ideas still come out of questions posed by curious students."

INFORMATION:


[Attachments] See images for this press release:
Dark matter detection

ELSE PRESS RELEASES FROM THIS DATE:

From yeast to hypha: How Candida albicans makes the switch

From yeast to hypha: How Candida albicans makes the switch
2021-05-05
BUFFALO, N.Y. -- You might call Candida albicans a shape-shifter: As this fungus grows, it can multiply as single, oval-shaped cells called yeast or propagate in an elongated form called hypha, consisting of thread-like filaments. This dual nature can help the pathogen survive in the body, where it can cause disease, including dangerous hospital-acquired infections. But how does this switching ability occur? New research identifies one factor that may contribute. In a study that will be published on May 5 in the journal mSphere, University at Buffalo biologists Guolei Zhao and Laura Rusche report that a protein called Sir2 may facilitate C. albicans' transition from ovoid yeast ...

New ultrasound technique detects fetal circulation problems in placenta

2021-05-05
WHAT: A team of researchers funded by the National Institutes of Health has developed a new ultrasound technique to monitor the placenta for impaired fetal blood flow early in pregnancy. The technique, which uses conventional ultrasound equipment, relies on subtle differences in the pulsation of fetal blood through the arteries at the fetal and placental ends of the umbilical cord, potentially enabling physicians to identify placental abnormalities that impair fetal blood flow and, if necessary, deliver the fetus early. Like current ultrasound techniques, the new technique can also detect impaired flow of maternal blood through the placenta. The study was conducted by John G. Sled, Ph.D., of The Hospital for Sick Children in Toronto, ...

New imaging technique captures how brain moves in stunning detail, holds diagnostic potential

2021-05-05
Magnetic Resonance Imaging (MRI) images are usually meant to be static. But now, researchers from Mātai Medical Research Institute (Mātai), Stevens Institute of Technology, Stanford University, the University of Auckland and other institutions, report on an imaging technique that captures the brain in motion in real time, in 3D and in stunning detail, providing a potential diagnostic tool for detecting difficult-to-spot conditions such as obstructive brain disorders and aneurysms - before they become life threatening. The new technique, called 3D amplified ...

How a Yale scientist and REM star named an ant for a Warhol 'Superstar'

How a Yale scientist and REM star named an ant for a Warhol Superstar
2021-05-05
The ant came in a small vial of ethanol, sealed in a plastic bag, and packed in a small cardboard box. It was addressed to Yale's Douglas B. Booher. German entomologist Phillip Hoenle had discovered the ant, which he noted had some peculiar features, in a rain forest in Ecuador. Now he wanted Booher, a research associate in the Yale Center for Biodiversity and Global Change and the Department of Ecology & Evolutionary Biology, to confirm whether this trap ant was truly a new species. If so, Hoenle and Booher would have the honor of naming it. Booher had imagined ...

Crohn's disease patients have specific IgG antibodies to human bacterial flagellins

Crohns disease patients have specific IgG antibodies to human bacterial flagellins
2021-05-05
BIRMINGHAM, Ala. - Last year, Charles O. Elson, M.D., demonstrated a potential preventive treatment for Crohn's disease, a form of inflammatory bowel disease. He used a mouse model that included immune-reactive T cells from patients with Crohn's disease in a flagellin peptide-specific immunotherapy. This study provided proof-of-principle that a flagellin-directed immunotherapy might provide similar benefits in patients. Now University of Alabama at Birmingham researchers have moved a step closer to possible clinical testing of this treatment, say Elson and co-first authors Katie Alexander, Ph.D., ...

Cardiovascular disease could be diagnosed earlier with new glowing probe

Cardiovascular disease could be diagnosed earlier with new glowing probe
2021-05-05
Researchers have created a probe that glows when it detects an enzyme associated with issues that can lead to blood clots and strokes. The team of researchers, from the Department of Chemistry and the National Lung and Heart Institute at Imperial College London, demonstrated that their probe quickly and accurately detects the enzyme in modified E. Coli cells. They are now expanding this proof-of-concept study, published in the Journal of the American Chemical Society and funded by the British Heart Foundation (BHF), with the hope of creating rapid tests for cardiovascular problems and a new way to track long-term conditions. The build-up of plaque in the arteries - known as atherosclerosis - can lead to coronary artery ...

Research confirms trawl ban substantially increases the abundance of marine organisms

Research confirms trawl ban substantially increases the abundance of marine organisms
2021-05-05
Biodiversity is of crucial importance to the marine ecosystem. The prohibition of trawling activities in the Hong Kong marine environment for two and a half years has significantly improved biodiversity, an inter-university study led by City University of Hong Kong (CityU) has found. Research results showed that the trawl ban could restore and conserve biodiversity in tropical coastal waters. The research team was led by Professor Kenneth Leung Mei-yee, CityU's Director of the State Key Laboratory of Marine Pollution (SKLMP) and Chair Professor in the Department ...

Magnetic material invented by Irish scientists breaks super-fast switching record

2021-05-05
Researchers at CRANN (The Centre for Research on Adaptive Nanostructures and Nanodevices), and the School of Physics at Trinity College Dublin, today announced that a magnetic material developed at the Centre demonstrates the fastest magnetic switching ever recorded. The team used femtosecond laser systems in the Photonics Research Laboratory at CRANN to switch and then re-switch the magnetic orientation of their material in trillionths of a second, six times faster than the previous record, and a hundred times faster than the clock speed of a personal computer. This discovery demonstrates the potential of the material for a new generation of energy efficient ultra-fast computers and data storage systems. The researchers ...

The oldest human burial in Africa

The oldest human burial in Africa
2021-05-05
Despite being home to the earliest signs of modern human behaviour, early evidence of burials in Africa are scarce and often ambiguous. Therefore, little is known about the origin and development of mortuary practices in the continent of our species' birth. A child buried at the mouth of the Panga ya Saidi cave site 78,000 years ago is changing that, revealing how Middle Stone Age populations interacted with the dead. Panga ya Saidi has been an important site for human origins research since excavations began in 2010 as part of a long-term partnership between archaeologists from the Max Planck Institute for the Science of Human ...

New modeling of Antarctic ice shows unstoppable sea level rise if Paris targets overshot

New modeling of Antarctic ice shows unstoppable sea level rise if Paris targets overshot
2021-05-05
AMHERST, Mass. - The world is currently on track to exceed three degrees Celsius of global warming, and new research led by the University of Massachusetts Amherst's Rob DeConto, co-director of the School of Earth & Sustainability, shows that such a scenario would drastically accelerate the pace of sea-level rise by 2100. If the rate of global warming continues on its current trajectory, we will reach a tipping point by 2060, past which these consequences would be "irreversible on multi-century timescales." The new paper, published today in Nature, models the impact of several different warming scenarios on the Antarctic Ice Sheet, including the Paris Agreement target of two degrees Celsius of warming, an aspirational 1.5 degree scenario, ...

LAST 30 PRESS RELEASES:

Risk of internal bleeding doubles when people on anticoagulants take NSAID painkiller

‘Teen-friendly’ mindfulness therapy aims to help combat depression among teenagers

Innovative risk score accurately calculates which kidney transplant candidates are also at risk for heart attack or stroke, new study finds

Kidney outcomes in transthyretin amyloid cardiomyopathy

Partial cardiac denervation to prevent postoperative atrial fibrillation after coronary artery bypass grafting

Finerenone in women and men with heart failure with mildly reduced or preserved ejection fraction

Finerenone, serum potassium, and clinical outcomes in heart failure with mildly reduced or preserved ejection fraction

Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

[Press-News.org] Dark matter detection
UD's Singh and collaborators propose repurposing tabletop sensors to search for dark matter