PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Discovering candidate for reflex network of walking cats: Understanding animals with robots

Discovering candidate for reflex network of walking cats: Understanding animals with robots
2021-05-11
(Press-News.org) A group of researchers from Osaka University developed a quadruped robot platform that can reproduce the neuromuscular dynamics of animals (Figure 1), discovering that a steady gait and experimental behaviors of walking cats emerged from the reflex circuit in walking experiments on this robot. Their research results were published in Frontiers in Neurorobotics.

It was thought that a steady gait in animals is generated by complex nerve systems in the brain and spinal marrow; however, recent research shows that a steady gait is produced by the reflex circuit alone. Scientists discovered a candidate of reflex circuit to generate the steady walking motion of cats, investigating locomotion mechanisms of cats by reproducing their motor control using robots and computer simulations.

Since experiments using animals are strictly controlled and restricted in terms of animal protection, it is difficult to study animal locomotion. So, it is still unknown how nerve systems discovered in prior research are integrated (i.e., how reflex circuits responsible for animal locomotion are integrated) in the animal body.

Toyoaki Tanikawa and his supervisors assistant professor Yoichi Masuda and Prof Masato Ishikawa developed a four-legged robot that enables the reproduction of motor control of animals using computers. This quadruped robot, which comprises highly back-drivable legs to reproduce the flexibility of animals and torque-controllable motors, can reproduce muscle characteristics of animals. Thus, it is possible to conduct various experiments using this robot instead of the animals themselves.

By searching for the reflex circuit that contributes to the generation of a steady walking in cats through robotic experiments, the researchers found a simple reflex circuit that could produce leg trajectories and a steady gait pattern, which they named "reciprocal excitatory reflex between hip and knee extensors."

In this study, the researchers found that: - The robot generated steady walking motions by simply reproducing the reciprocal circuit in each leg of the robot. - The robot's gait became unstable when the reciprocal circuit was cut off. - When the mutual excitatory circuit was stimulated, the circuit produced a phenomenon called 'prolongation of the stance phase.' This result suggests that this circuit is an important component responsible for walking in cats.

This group's research results will benefit both the biology and robotics fields. In addition to bringing new knowledge to biology, if robotic animals could serve as a replacement for real animals in the future, it will give more scientists the chance to study the mechanisms of animal locomotion under various experimental conditions. Approximating a robot's structure to that of an animal will lead to the development of fundamental technologies for making robots that move and maneuver as effectively as animals.

Co-author Yoichi Masuda says, "Gaining knowledge about animals without using experimental animals is also significant for the humans that live with them. Further combination of robotics and biology through the creation of robots that mimic the structures of animals and their locomotion could become the first step towards understanding the principles underlying the behaviors of animals and humans."

INFORMATION:

The article, "A reciprocal excitatory reflex between extensors reproduces the prolongation of stance phase in walking cats: analysis on a robotic platform," was published in Frontiers in Neurorobotics at DOI: https://doi.org/10.3389/fnbot.2021.636864

A video detailing this research can be viewed on https://youtu.be/-iLHRhvDccA

About Osaka University Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation. Website: https://resou.osaka-u.ac.jp/en


[Attachments] See images for this press release:
Discovering candidate for reflex network of walking cats: Understanding animals with robots

ELSE PRESS RELEASES FROM THIS DATE:

Researchers reveal Knl1 gene function in plants

Researchers reveal Knl1 gene function in plants
2021-05-11
Dr. HAN Fangpu's group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences reports the identification and functional study of the maize Knl1 gene in an article published online in PNAS. The gene is a major component of the KMN network that links centromeric DNA and the plus-ends of spindle microtubules. It also plays an important role in kinetochore protein recruitment. The kinetochore complex that assembles on the centromeres mediates the proper partitioning of chromosomes to daughter cells during the cell cycle. However, kinetochore proteins undergo frequent mutations and coevolve with their interaction partners, leading to great diversity in kinetochore composition in eukaryotes. Functional ...

Researchers develop magnetic thin film for spin-thermoelectric energy conversion

Researchers develop magnetic thin film for spin-thermoelectric energy conversion
2021-05-11
A team of researchers, affiliated with UNIST has recently introduced a new class of magnetic materials for spin caloritronics. Published in the February 2021 issue of Nature Communications, the demonstrated STE applications of a new class of magnets will pave the way for versatile recycling of ubiquitous waste heat. This breakthrough has been led by Professor Jung-Woo Yoo and his research team in the Department of Materials Science and Engineering at UNIST. Spin thermoelectrics is an emerging thermoelectric technology that offers energy harvesting from waste heat. ...

In 'minibrains,' hindering key enzyme by different amounts has opposite growth effects

In minibrains, hindering key enzyme by different amounts has opposite growth effects
2021-05-11
Like many around the world, the lab of Professor Mriganka Sur in The Picower Institute for Learning and Memory at MIT has embraced the young technology of cerebral organoids, or "minibrains," for studying human brain development in health and disease. By making a surprising finding about a common practice in the process of growing the complex tissue cultures, the lab has produced both new guidance that can make the technology better, and also new insight into the important roles a prevalent enzyme takes in natural brain development. To make organoids, scientists take skin cells from a donor, induce them to become stem cells and then culture those in a bioreactor, guiding their development with the addition of growth ...

People are persuaded by social media messages, not view numbers

2021-05-11
COLUMBUS, Ohio - People are more persuaded by the actual messages contained in social media posts than they are by how many others viewed the posts, a new study suggests. Researchers found that when people watched YouTube videos either for or against e-cigarette use, their level of persuasion wasn't directly affected by whether the video said it was viewed by more than a million people versus by fewer than 20. What mattered for persuasion was viewers' perception of the message as truthful and believable. "There wasn't a bandwagon effect in which people were persuaded by a video just because ...

Gene therapy offers a potential cure to children born without immune system

2021-05-11
An international team of researchers at Great Ormond Street Hospital (GOSH), and University of California, Los Angeles (UCLA) have developed a gene therapy that successfully treated 48 out of 50 children with a form of severe combined immunodeficiency that leaves them without an immune system. Severe combined immunodeficiency due to adenosine deaminase deficiency, also known as ADA-SCID, is a rare, life-threatening disease that prevents children from living a normal life. It is caused by mutations in the gene that creates the enzyme adenosine deaminase, which is essential to a functioning immune system. Children with ADA-SCID have no immune system and, if left untreated, the condition can be fatal within the first two years of life. Day-to-day activities ...

Gene therapy offers potential cure to children born without an immune system

Gene therapy offers potential cure to children born without an immune system
2021-05-11
An experimental form of gene therapy developed by a team of researchers from UCLA and Great Ormond Street Hospital in London has successfully treated 48 of 50 children born with a rare and deadly inherited disorder that leaves them without an immune system. Severe combined immunodeficiency due to adenosine deaminase deficiency, or ADA-SCID, is caused by mutations in the ADA gene that creates the enzyme adenosine deaminase, which is essential to a functioning immune system. For children with the condition, even day-to-day activities like going to school or playing with friends can lead to dangerous, life-threatening infections. If untreated, ADA-SCID can be fatal within the first two years of life. The investigational gene therapy method involves first collecting ...

A comprehensive map of the SARS-CoV-2 genome

2021-05-11
CAMBRIDGE, MA -- In early 2020, a few months after the Covid-19 pandemic began, scientists were able to sequence the full genome of the virus that causes the infection, SARS-CoV-2. While many of its genes were already known at that point, the full complement of protein-coding genes was unresolved. Now, after performing an extensive comparative genomics study, MIT researchers have generated what they describe as the most accurate and complete gene annotation of the SARS-CoV-2 genome. In their study, which appears today in Nature Communications, they confirmed ...

Boosting body heat production: A new approach for treating obesity

Boosting body heat production: A new approach for treating obesity
2021-05-11
A receptor that helps conserve energy when food is scarce may be the key to a safer approach to treating diet-induced obesity, research led by the Garvan Institute of Medical Research has revealed. In a study using experimental models and fat tissue biopsies from obese individuals, the team revealed that blocking a specific receptor of the molecule neuropeptide Y (NPY), which helps our body regulate its heat production, could increase fat metabolism and prevent weight gain. "The Y1 receptor acts as a 'brake' for heat generation in the body. In our study, we found that blocking this receptor in fat tissues transformed the 'energy-storing' fat into 'energy-burning' fat, which ...

1.5°C degrowth scenarios suggest need for new mitigation pathways: Research

1.5°C degrowth scenarios suggest need for new mitigation pathways: Research
2021-05-11
The first comprehensive comparison of 'degrowth' scenarios with established pathways to limit climate change highlights the risk of over-reliance on carbon dioxide removal, renewable energy and energy efficiency to support continued global growth - which is assumed in established global climate modelling. Degrowth focuses on the global North and is defined as an equitable, democratic reduction in energy and material use while maintaining wellbeing. A decline in GDP is accepted as a likely outcome of this transition. The new modelling by the University of Sydney and ETH Zürich includes high growth/technological change and scenarios summarised ...

Hidden within African diamonds, a billion-plus years of deep-earth history

Hidden within African diamonds, a billion-plus years of deep-earth history
2021-05-11
Diamonds are sometimes described as messengers from the deep earth; scientists study them closely for insights into the otherwise inaccessible depths from which they come. But the messages are often hard to read. Now, a team has come up with a way to solve two longstanding puzzles: the ages of individual fluid-bearing diamonds, and the chemistry of their parent material. The research has allowed them to sketch out geologic events going back more than a billion years--a potential breakthrough not only in the study of diamonds, but of planetary evolution. Gem-quality diamonds are nearly pure lattices of carbon. This elemental purity ...

LAST 30 PRESS RELEASES:

Tumor suppressor forms gel-like assemblies to sacrifice cancer cells

New research uncovers how Barred Owls interact with urban areas and why it matters

50 years of survey data confirm African elephant decline

Swirling polar vortices likely exist on the Sun, new research finds

Protein degradation strategy offers new hope in cancer therapy

Mental fatigue leads to loss of self-control by putting brain areas to sleep

Was ‘Snowball Earth’ a global event? New study delivers best proof yet

Scientists issue call to action underlining importance of microbial solutions to tackle climate crisis

Ochsner Transplant Institute among site collaborators in New England Journal of Medicine HIV-to-HIV kidney transplant study

Scientists call for global action on microbial climate solutions

New antibody could be promising cancer treatment

The public implications of private substitutes for electric grid reliability

Religiosity, spirituality, and meaning-making generally associated with lower suicidality

Eife studying legal surveillance as social determinant of health

Newly developed 100Gbps data transfer system for accelerating Open Science through industry-university collaboration in Japan

Navigating bias in AI-driven cancer detection

Research shows stress about personal finances may make leaders abusive in workplace

Holistic approach of nutrients and traditional natural medicines for human health

Study: Online E-cigarette retailers fail to comply with sale regulations

Prevalence of adverse childhood experiences in child population samples

Asthma and memory function in children

Asthma may place children at risk of memory difficulties, new research finds

Age related health decline a predictor of future dementia risk

First-in-human universal gene therapy for blood disorder

Study: Older adult prostate cancer patients are increasingly being overtreated

Experiences of discrimination linked to postpartum weight retention

New python package, ERTool, developed for efficient multi-source evidence fusion

AI-based software 'guide' childbirth by ‘seeing’ the baby’s position in real time

Arab scholars from around the globe convene in Qatar to advance science and research

Gender inequality ingrained in global climate negotiations, say researchers

[Press-News.org] Discovering candidate for reflex network of walking cats: Understanding animals with robots